Bond-graphs for some classic dynamic systems
Bond graphs are developed for several nonlinear dy namic systems which are often used in dynamics courses to demonstrate conservation principles and equation development via Newton's law or Lagrange's equation. The purpose here is to show the use of bond graphs in obtaining nonlinear diffe...
Gespeichert in:
Veröffentlicht in: | Simulation (San Diego, Calif.) Calif.), 1980-09, Vol.35 (3), p.81-87 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 3 |
container_start_page | 81 |
container_title | Simulation (San Diego, Calif.) |
container_volume | 35 |
creator | Margolis, Donald L. |
description | Bond graphs are developed for several nonlinear dy namic systems which are often used in dynamics courses to demonstrate conservation principles and equation development via Newton's law or Lagrange's equation. The purpose here is to show the use of bond graphs in obtaining nonlinear differential equations of motion for general nonlinear systems. Bond-graph models can also be expanded easily to include energetic interactions with all types of dynamic systems including hydraulic, electrical, thermal, and others. Numerical solutions for one example system are included. |
doi_str_mv | 10.1177/003754978003500302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283674929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_003754978003500302</sage_id><sourcerecordid>1283674929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-9d8d65cdb0a2a2707a7fb7735ddc36c61a6172c0a3eea4fa6e9de650d3ad68753</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjDzBlZCDUZ8e-ZISKL6kSC8zW1XZKqyQuvnbovydV2ZAYTu8Nz3PSvULcgLwHQJxKqdFUDdbjYsaR6kRMACsoNWh9KiYHoDwQ5-KCeS0lGEA7EXePaQjlMtPmi4s25YJTHwvfEfPKF2E_UD8m73kbe74SZy11HK9_81J8Pj99zF7L-fvL2-xhXnoN9bZsQh2s8WEhSZFCiYTtAlGbELy23gJZQOUl6RipasnGJkRrZNAUbI1GX4rb491NTt-7yFvXr9jHrqMhph07ULW2WDWqGVF1RH1OzDm2bpNXPeW9A-kO1bi_1YzS9CgxLaNbp10exnf-M34Am59i1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283674929</pqid></control><display><type>article</type><title>Bond-graphs for some classic dynamic systems</title><source>SAGE Complete A-Z List</source><creator>Margolis, Donald L.</creator><creatorcontrib>Margolis, Donald L.</creatorcontrib><description>Bond graphs are developed for several nonlinear dy namic systems which are often used in dynamics courses to demonstrate conservation principles and equation development via Newton's law or Lagrange's equation. The purpose here is to show the use of bond graphs in obtaining nonlinear differential equations of motion for general nonlinear systems. Bond-graph models can also be expanded easily to include energetic interactions with all types of dynamic systems including hydraulic, electrical, thermal, and others. Numerical solutions for one example system are included.</description><identifier>ISSN: 0037-5497</identifier><identifier>EISSN: 1741-3133</identifier><identifier>DOI: 10.1177/003754978003500302</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Bond graphs ; Bonding ; Differential equations ; Dynamical systems ; Mathematical analysis ; Mathematical models ; Nonlinear dynamics ; Nonlinearity</subject><ispartof>Simulation (San Diego, Calif.), 1980-09, Vol.35 (3), p.81-87</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-9d8d65cdb0a2a2707a7fb7735ddc36c61a6172c0a3eea4fa6e9de650d3ad68753</citedby><cites>FETCH-LOGICAL-c318t-9d8d65cdb0a2a2707a7fb7735ddc36c61a6172c0a3eea4fa6e9de650d3ad68753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/003754978003500302$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/003754978003500302$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Margolis, Donald L.</creatorcontrib><title>Bond-graphs for some classic dynamic systems</title><title>Simulation (San Diego, Calif.)</title><description>Bond graphs are developed for several nonlinear dy namic systems which are often used in dynamics courses to demonstrate conservation principles and equation development via Newton's law or Lagrange's equation. The purpose here is to show the use of bond graphs in obtaining nonlinear differential equations of motion for general nonlinear systems. Bond-graph models can also be expanded easily to include energetic interactions with all types of dynamic systems including hydraulic, electrical, thermal, and others. Numerical solutions for one example system are included.</description><subject>Bond graphs</subject><subject>Bonding</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><issn>0037-5497</issn><issn>1741-3133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjDzBlZCDUZ8e-ZISKL6kSC8zW1XZKqyQuvnbovydV2ZAYTu8Nz3PSvULcgLwHQJxKqdFUDdbjYsaR6kRMACsoNWh9KiYHoDwQ5-KCeS0lGEA7EXePaQjlMtPmi4s25YJTHwvfEfPKF2E_UD8m73kbe74SZy11HK9_81J8Pj99zF7L-fvL2-xhXnoN9bZsQh2s8WEhSZFCiYTtAlGbELy23gJZQOUl6RipasnGJkRrZNAUbI1GX4rb491NTt-7yFvXr9jHrqMhph07ULW2WDWqGVF1RH1OzDm2bpNXPeW9A-kO1bi_1YzS9CgxLaNbp10exnf-M34Am59i1g</recordid><startdate>198009</startdate><enddate>198009</enddate><creator>Margolis, Donald L.</creator><general>Sage Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198009</creationdate><title>Bond-graphs for some classic dynamic systems</title><author>Margolis, Donald L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-9d8d65cdb0a2a2707a7fb7735ddc36c61a6172c0a3eea4fa6e9de650d3ad68753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Bond graphs</topic><topic>Bonding</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margolis, Donald L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Simulation (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Margolis, Donald L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bond-graphs for some classic dynamic systems</atitle><jtitle>Simulation (San Diego, Calif.)</jtitle><date>1980-09</date><risdate>1980</risdate><volume>35</volume><issue>3</issue><spage>81</spage><epage>87</epage><pages>81-87</pages><issn>0037-5497</issn><eissn>1741-3133</eissn><abstract>Bond graphs are developed for several nonlinear dy namic systems which are often used in dynamics courses to demonstrate conservation principles and equation development via Newton's law or Lagrange's equation. The purpose here is to show the use of bond graphs in obtaining nonlinear differential equations of motion for general nonlinear systems. Bond-graph models can also be expanded easily to include energetic interactions with all types of dynamic systems including hydraulic, electrical, thermal, and others. Numerical solutions for one example system are included.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><doi>10.1177/003754978003500302</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-5497 |
ispartof | Simulation (San Diego, Calif.), 1980-09, Vol.35 (3), p.81-87 |
issn | 0037-5497 1741-3133 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283674929 |
source | SAGE Complete A-Z List |
subjects | Bond graphs Bonding Differential equations Dynamical systems Mathematical analysis Mathematical models Nonlinear dynamics Nonlinearity |
title | Bond-graphs for some classic dynamic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bond-graphs%20for%20some%20classic%20dynamic%20systems&rft.jtitle=Simulation%20(San%20Diego,%20Calif.)&rft.au=Margolis,%20Donald%20L.&rft.date=1980-09&rft.volume=35&rft.issue=3&rft.spage=81&rft.epage=87&rft.pages=81-87&rft.issn=0037-5497&rft.eissn=1741-3133&rft_id=info:doi/10.1177/003754978003500302&rft_dat=%3Cproquest_cross%3E1283674929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283674929&rft_id=info:pmid/&rft_sage_id=10.1177_003754978003500302&rfr_iscdi=true |