High-speed, multi-input, multi-output control using GPU processing in the HBT-EP tokamak

► We present a GPU based system for magnetic control of perturbed equilibria. ► Cycle times are below 5μs and I/O latencies below 10μs for 96 inputs and 64 outputs. ► A new architecture removes host RAM and CPU from the control cycle. ► GPU and DA/AD modules operate independently and communicate via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2012-12, Vol.87 (12), p.1895-1899
Hauptverfasser: Rath, N., Bialek, J., Byrne, P.J., DeBono, B., Levesque, J.P., Li, B., Mauel, M.E., Maurer, D.A., Navratil, G.A., Shiraki, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1899
container_issue 12
container_start_page 1895
container_title Fusion engineering and design
container_volume 87
creator Rath, N.
Bialek, J.
Byrne, P.J.
DeBono, B.
Levesque, J.P.
Li, B.
Mauel, M.E.
Maurer, D.A.
Navratil, G.A.
Shiraki, D.
description ► We present a GPU based system for magnetic control of perturbed equilibria. ► Cycle times are below 5μs and I/O latencies below 10μs for 96 inputs and 64 outputs. ► A new architecture removes host RAM and CPU from the control cycle. ► GPU and DA/AD modules operate independently and communicate via PCIe peer-to-peer connections. ► The Linux host system does not require real-time extensions. We report on the design of a new plasma control system for the HBT-EP tokamak that utilizes a graphical processing unit (GPU) to magnetically control the 3D perturbed equilibrium state [1] of the plasma. The control system achieves cycle times of 5μs and I/O latencies below 10μs for up to 96 inputs and 64 outputs. The number of state variables is in the same order. To handle the resulting computational complexity under the given time constraints, the control algorithms are designed for massively parallel processing. The necessary hardware resources are provided by an NVIDIA Tesla M2050 GPU, offering a total of 448 computing cores running at 1.3GHz each. A new control architecture allows control input from magnetic diagnostics to be pushed directly into GPU memory by a D-TACQ ACQ196 digitizer, and control output to be pulled directly from GPU memory by two D-TACQ AO32 analog output modules. By using peer-to-peer PCI express connections, this technique completely eliminates the use of host RAM and central processing unit (CPU) from the control cycle, permitting single-digit microsecond latencies on a standard Linux host system without any real-time extensions.
doi_str_mv 10.1016/j.fusengdes.2012.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283670147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379612002542</els_id><sourcerecordid>1283670147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-f9721547c9dccdf584de010ecb20f77c0b0c08d43ee4d115862b3c93edf330403</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwRw9mHWySTe7x1pqKwj20IK3sE1m27T7p26ygt_erVWvwsDw4L3HzI-QWw4RB5487KKi81hvLPooBh5HICMAcUYGPFWCKZ4l52QAWQxMqCy5JFfe7wC46mdA3uZus2X-gGjvadWVwTFXH7rwK5ou9Iqapg5tU9LOu3pDZ4sVPbSNQf8tXU3DFun8ccmmCxqafV7l-2tyUeSlx5ufPSSrp-lyMmcvr7PnyfiFGcllYEWmYj6SymTWGFuMUmkROKBZx1AoZWANBlIrBaK0nI_SJF4Lkwm0hRAgQQzJ3am3P-i9Qx905bzBssxrbDqveZyKpP9Vqt6qTlbTNt63WOhD66q8_dQc9JGl3uk_lvrIUoPUPcs-OT4lsf_kw2GrvXFYG7SuRRO0bdy_HV9spoF6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283670147</pqid></control><display><type>article</type><title>High-speed, multi-input, multi-output control using GPU processing in the HBT-EP tokamak</title><source>Elsevier ScienceDirect Journals</source><creator>Rath, N. ; Bialek, J. ; Byrne, P.J. ; DeBono, B. ; Levesque, J.P. ; Li, B. ; Mauel, M.E. ; Maurer, D.A. ; Navratil, G.A. ; Shiraki, D.</creator><creatorcontrib>Rath, N. ; Bialek, J. ; Byrne, P.J. ; DeBono, B. ; Levesque, J.P. ; Li, B. ; Mauel, M.E. ; Maurer, D.A. ; Navratil, G.A. ; Shiraki, D.</creatorcontrib><description>► We present a GPU based system for magnetic control of perturbed equilibria. ► Cycle times are below 5μs and I/O latencies below 10μs for 96 inputs and 64 outputs. ► A new architecture removes host RAM and CPU from the control cycle. ► GPU and DA/AD modules operate independently and communicate via PCIe peer-to-peer connections. ► The Linux host system does not require real-time extensions. We report on the design of a new plasma control system for the HBT-EP tokamak that utilizes a graphical processing unit (GPU) to magnetically control the 3D perturbed equilibrium state [1] of the plasma. The control system achieves cycle times of 5μs and I/O latencies below 10μs for up to 96 inputs and 64 outputs. The number of state variables is in the same order. To handle the resulting computational complexity under the given time constraints, the control algorithms are designed for massively parallel processing. The necessary hardware resources are provided by an NVIDIA Tesla M2050 GPU, offering a total of 448 computing cores running at 1.3GHz each. A new control architecture allows control input from magnetic diagnostics to be pushed directly into GPU memory by a D-TACQ ACQ196 digitizer, and control output to be pulled directly from GPU memory by two D-TACQ AO32 analog output modules. By using peer-to-peer PCI express connections, this technique completely eliminates the use of host RAM and central processing unit (CPU) from the control cycle, permitting single-digit microsecond latencies on a standard Linux host system without any real-time extensions.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2012.04.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Central processing units ; Computation ; Control systems ; Design engineering ; Digitization ; GPU ; High speed ; Mathematical analysis ; Mathematical models ; MIMO ; Perturbed equilibria ; Plasma control ; Tokamak ; Tokamak devices</subject><ispartof>Fusion engineering and design, 2012-12, Vol.87 (12), p.1895-1899</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-f9721547c9dccdf584de010ecb20f77c0b0c08d43ee4d115862b3c93edf330403</citedby><cites>FETCH-LOGICAL-c414t-f9721547c9dccdf584de010ecb20f77c0b0c08d43ee4d115862b3c93edf330403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379612002542$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rath, N.</creatorcontrib><creatorcontrib>Bialek, J.</creatorcontrib><creatorcontrib>Byrne, P.J.</creatorcontrib><creatorcontrib>DeBono, B.</creatorcontrib><creatorcontrib>Levesque, J.P.</creatorcontrib><creatorcontrib>Li, B.</creatorcontrib><creatorcontrib>Mauel, M.E.</creatorcontrib><creatorcontrib>Maurer, D.A.</creatorcontrib><creatorcontrib>Navratil, G.A.</creatorcontrib><creatorcontrib>Shiraki, D.</creatorcontrib><title>High-speed, multi-input, multi-output control using GPU processing in the HBT-EP tokamak</title><title>Fusion engineering and design</title><description>► We present a GPU based system for magnetic control of perturbed equilibria. ► Cycle times are below 5μs and I/O latencies below 10μs for 96 inputs and 64 outputs. ► A new architecture removes host RAM and CPU from the control cycle. ► GPU and DA/AD modules operate independently and communicate via PCIe peer-to-peer connections. ► The Linux host system does not require real-time extensions. We report on the design of a new plasma control system for the HBT-EP tokamak that utilizes a graphical processing unit (GPU) to magnetically control the 3D perturbed equilibrium state [1] of the plasma. The control system achieves cycle times of 5μs and I/O latencies below 10μs for up to 96 inputs and 64 outputs. The number of state variables is in the same order. To handle the resulting computational complexity under the given time constraints, the control algorithms are designed for massively parallel processing. The necessary hardware resources are provided by an NVIDIA Tesla M2050 GPU, offering a total of 448 computing cores running at 1.3GHz each. A new control architecture allows control input from magnetic diagnostics to be pushed directly into GPU memory by a D-TACQ ACQ196 digitizer, and control output to be pulled directly from GPU memory by two D-TACQ AO32 analog output modules. By using peer-to-peer PCI express connections, this technique completely eliminates the use of host RAM and central processing unit (CPU) from the control cycle, permitting single-digit microsecond latencies on a standard Linux host system without any real-time extensions.</description><subject>Central processing units</subject><subject>Computation</subject><subject>Control systems</subject><subject>Design engineering</subject><subject>Digitization</subject><subject>GPU</subject><subject>High speed</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MIMO</subject><subject>Perturbed equilibria</subject><subject>Plasma control</subject><subject>Tokamak</subject><subject>Tokamak devices</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwRw9mHWySTe7x1pqKwj20IK3sE1m27T7p26ygt_erVWvwsDw4L3HzI-QWw4RB5487KKi81hvLPooBh5HICMAcUYGPFWCKZ4l52QAWQxMqCy5JFfe7wC46mdA3uZus2X-gGjvadWVwTFXH7rwK5ou9Iqapg5tU9LOu3pDZ4sVPbSNQf8tXU3DFun8ccmmCxqafV7l-2tyUeSlx5ufPSSrp-lyMmcvr7PnyfiFGcllYEWmYj6SymTWGFuMUmkROKBZx1AoZWANBlIrBaK0nI_SJF4Lkwm0hRAgQQzJ3am3P-i9Qx905bzBssxrbDqveZyKpP9Vqt6qTlbTNt63WOhD66q8_dQc9JGl3uk_lvrIUoPUPcs-OT4lsf_kw2GrvXFYG7SuRRO0bdy_HV9spoF6</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Rath, N.</creator><creator>Bialek, J.</creator><creator>Byrne, P.J.</creator><creator>DeBono, B.</creator><creator>Levesque, J.P.</creator><creator>Li, B.</creator><creator>Mauel, M.E.</creator><creator>Maurer, D.A.</creator><creator>Navratil, G.A.</creator><creator>Shiraki, D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201212</creationdate><title>High-speed, multi-input, multi-output control using GPU processing in the HBT-EP tokamak</title><author>Rath, N. ; Bialek, J. ; Byrne, P.J. ; DeBono, B. ; Levesque, J.P. ; Li, B. ; Mauel, M.E. ; Maurer, D.A. ; Navratil, G.A. ; Shiraki, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-f9721547c9dccdf584de010ecb20f77c0b0c08d43ee4d115862b3c93edf330403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Central processing units</topic><topic>Computation</topic><topic>Control systems</topic><topic>Design engineering</topic><topic>Digitization</topic><topic>GPU</topic><topic>High speed</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MIMO</topic><topic>Perturbed equilibria</topic><topic>Plasma control</topic><topic>Tokamak</topic><topic>Tokamak devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rath, N.</creatorcontrib><creatorcontrib>Bialek, J.</creatorcontrib><creatorcontrib>Byrne, P.J.</creatorcontrib><creatorcontrib>DeBono, B.</creatorcontrib><creatorcontrib>Levesque, J.P.</creatorcontrib><creatorcontrib>Li, B.</creatorcontrib><creatorcontrib>Mauel, M.E.</creatorcontrib><creatorcontrib>Maurer, D.A.</creatorcontrib><creatorcontrib>Navratil, G.A.</creatorcontrib><creatorcontrib>Shiraki, D.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rath, N.</au><au>Bialek, J.</au><au>Byrne, P.J.</au><au>DeBono, B.</au><au>Levesque, J.P.</au><au>Li, B.</au><au>Mauel, M.E.</au><au>Maurer, D.A.</au><au>Navratil, G.A.</au><au>Shiraki, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-speed, multi-input, multi-output control using GPU processing in the HBT-EP tokamak</atitle><jtitle>Fusion engineering and design</jtitle><date>2012-12</date><risdate>2012</risdate><volume>87</volume><issue>12</issue><spage>1895</spage><epage>1899</epage><pages>1895-1899</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>► We present a GPU based system for magnetic control of perturbed equilibria. ► Cycle times are below 5μs and I/O latencies below 10μs for 96 inputs and 64 outputs. ► A new architecture removes host RAM and CPU from the control cycle. ► GPU and DA/AD modules operate independently and communicate via PCIe peer-to-peer connections. ► The Linux host system does not require real-time extensions. We report on the design of a new plasma control system for the HBT-EP tokamak that utilizes a graphical processing unit (GPU) to magnetically control the 3D perturbed equilibrium state [1] of the plasma. The control system achieves cycle times of 5μs and I/O latencies below 10μs for up to 96 inputs and 64 outputs. The number of state variables is in the same order. To handle the resulting computational complexity under the given time constraints, the control algorithms are designed for massively parallel processing. The necessary hardware resources are provided by an NVIDIA Tesla M2050 GPU, offering a total of 448 computing cores running at 1.3GHz each. A new control architecture allows control input from magnetic diagnostics to be pushed directly into GPU memory by a D-TACQ ACQ196 digitizer, and control output to be pulled directly from GPU memory by two D-TACQ AO32 analog output modules. By using peer-to-peer PCI express connections, this technique completely eliminates the use of host RAM and central processing unit (CPU) from the control cycle, permitting single-digit microsecond latencies on a standard Linux host system without any real-time extensions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2012.04.003</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2012-12, Vol.87 (12), p.1895-1899
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_miscellaneous_1283670147
source Elsevier ScienceDirect Journals
subjects Central processing units
Computation
Control systems
Design engineering
Digitization
GPU
High speed
Mathematical analysis
Mathematical models
MIMO
Perturbed equilibria
Plasma control
Tokamak
Tokamak devices
title High-speed, multi-input, multi-output control using GPU processing in the HBT-EP tokamak
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-speed,%20multi-input,%20multi-output%20control%20using%20GPU%20processing%20in%20the%20HBT-EP%20tokamak&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Rath,%20N.&rft.date=2012-12&rft.volume=87&rft.issue=12&rft.spage=1895&rft.epage=1899&rft.pages=1895-1899&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2012.04.003&rft_dat=%3Cproquest_cross%3E1283670147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283670147&rft_id=info:pmid/&rft_els_id=S0920379612002542&rfr_iscdi=true