Short-term prediction of photovoltaic energy generation by intelligent approach

► ANN correlates metrological data and energy generated by PV. ► ANN hidden neurons number estimated by rule of thumb is justified statistically. ► Three parameters predict real-time and up-to-20-min lapse PV energy generated. ► The result offers a 95% confidence level of prediction crucial to power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2012-12, Vol.55, p.660-667
Hauptverfasser: Chow, Stanley K.H., Lee, Eric W.M., Li, Danny H.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue
container_start_page 660
container_title Energy and buildings
container_volume 55
creator Chow, Stanley K.H.
Lee, Eric W.M.
Li, Danny H.W.
description ► ANN correlates metrological data and energy generated by PV. ► ANN hidden neurons number estimated by rule of thumb is justified statistically. ► Three parameters predict real-time and up-to-20-min lapse PV energy generated. ► The result offers a 95% confidence level of prediction crucial to power management. Population growth and quickly depleting fossil fuel reserves are creating demand for the development and use of renewable energy resources such as solar energy. The evaluation and forecasting of energy demands have become concerns for facility managers, and predicting energy generation plays a critical role in power-system management, scheduling, and dispatch operations. A reliable energy supply forecast helps to prevent unexpected loads and provides vital information for decisions made on energy generation and purchase. However, study of energy generation prediction by the photovoltaic (PV) system has been limited over the years, especially concerning short-term predictions. This study will adopt the artificial neural network (ANN) to mimic the nonlinear correlation between the metrological parameters and energy generated by the PV system. It aims to find that short-term prediction performance is comparable with real-time prediction performance when ahead solar angles are applied to the predictions.
doi_str_mv 10.1016/j.enbuild.2012.08.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283668827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877881200415X</els_id><sourcerecordid>1283668827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a40c6e738f5d4a9f504332b8f984b50f47e36666792f83d27b30b2925c44610b3</originalsourceid><addsrcrecordid>eNqFkD1rwzAQhj200PTjJxS8FLrYPUm2pUylhH5BIEPbWcjyKVFwLFdSAvn3VZrQtbccHM_dKz1ZdkugJECah3WJQ7u1fVdSILQEUQIhZ9kEGBcF50JcZJchrAGgqTmZZIuPlfOxiOg3-eixszpaN-TO5OPKRbdzfVRW5zigX-7z5aGrX6Ld53aI2Pc2DWOuxtE7pVfX2blRfcCbU7_Kvl6eP2dvxXzx-j57mheacRoLVYFukDNh6q5SU1NDxRhthZmKqq3BVBxZk4pPqRGso7xl0NIprXVVNQRadpXdH--m2O8thig3Nuj0HDWg2wZJqEgHhKA8ofUR1d6F4NHI0duN8ntJQB6kybU8SZMHaRKETNLS3t0pQgWteuPVoG34W6YNZ4SyOnGPRw7Tf3cWvQza4qCTTI86ys7Zf5J-AEDDh0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283668827</pqid></control><display><type>article</type><title>Short-term prediction of photovoltaic energy generation by intelligent approach</title><source>Elsevier ScienceDirect Journals</source><creator>Chow, Stanley K.H. ; Lee, Eric W.M. ; Li, Danny H.W.</creator><creatorcontrib>Chow, Stanley K.H. ; Lee, Eric W.M. ; Li, Danny H.W.</creatorcontrib><description>► ANN correlates metrological data and energy generated by PV. ► ANN hidden neurons number estimated by rule of thumb is justified statistically. ► Three parameters predict real-time and up-to-20-min lapse PV energy generated. ► The result offers a 95% confidence level of prediction crucial to power management. Population growth and quickly depleting fossil fuel reserves are creating demand for the development and use of renewable energy resources such as solar energy. The evaluation and forecasting of energy demands have become concerns for facility managers, and predicting energy generation plays a critical role in power-system management, scheduling, and dispatch operations. A reliable energy supply forecast helps to prevent unexpected loads and provides vital information for decisions made on energy generation and purchase. However, study of energy generation prediction by the photovoltaic (PV) system has been limited over the years, especially concerning short-term predictions. This study will adopt the artificial neural network (ANN) to mimic the nonlinear correlation between the metrological parameters and energy generated by the PV system. It aims to find that short-term prediction performance is comparable with real-time prediction performance when ahead solar angles are applied to the predictions.</description><identifier>ISSN: 0378-7788</identifier><identifier>DOI: 10.1016/j.enbuild.2012.08.011</identifier><identifier>CODEN: ENEBDR</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Artificial neural network ; Building technical equipments ; Buildings ; Buildings. Public works ; Energy ; Energy management and energy conservation in building ; Environmental engineering ; Exact sciences and technology ; Natural energy ; Photovoltaic conversion ; Photovoltaic panel ; Solar angle ; Solar energy</subject><ispartof>Energy and buildings, 2012-12, Vol.55, p.660-667</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a40c6e738f5d4a9f504332b8f984b50f47e36666792f83d27b30b2925c44610b3</citedby><cites>FETCH-LOGICAL-c372t-a40c6e738f5d4a9f504332b8f984b50f47e36666792f83d27b30b2925c44610b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2012.08.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26731235$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chow, Stanley K.H.</creatorcontrib><creatorcontrib>Lee, Eric W.M.</creatorcontrib><creatorcontrib>Li, Danny H.W.</creatorcontrib><title>Short-term prediction of photovoltaic energy generation by intelligent approach</title><title>Energy and buildings</title><description>► ANN correlates metrological data and energy generated by PV. ► ANN hidden neurons number estimated by rule of thumb is justified statistically. ► Three parameters predict real-time and up-to-20-min lapse PV energy generated. ► The result offers a 95% confidence level of prediction crucial to power management. Population growth and quickly depleting fossil fuel reserves are creating demand for the development and use of renewable energy resources such as solar energy. The evaluation and forecasting of energy demands have become concerns for facility managers, and predicting energy generation plays a critical role in power-system management, scheduling, and dispatch operations. A reliable energy supply forecast helps to prevent unexpected loads and provides vital information for decisions made on energy generation and purchase. However, study of energy generation prediction by the photovoltaic (PV) system has been limited over the years, especially concerning short-term predictions. This study will adopt the artificial neural network (ANN) to mimic the nonlinear correlation between the metrological parameters and energy generated by the PV system. It aims to find that short-term prediction performance is comparable with real-time prediction performance when ahead solar angles are applied to the predictions.</description><subject>Applied sciences</subject><subject>Artificial neural network</subject><subject>Building technical equipments</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Energy</subject><subject>Energy management and energy conservation in building</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Photovoltaic panel</subject><subject>Solar angle</subject><subject>Solar energy</subject><issn>0378-7788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkD1rwzAQhj200PTjJxS8FLrYPUm2pUylhH5BIEPbWcjyKVFwLFdSAvn3VZrQtbccHM_dKz1ZdkugJECah3WJQ7u1fVdSILQEUQIhZ9kEGBcF50JcZJchrAGgqTmZZIuPlfOxiOg3-eixszpaN-TO5OPKRbdzfVRW5zigX-7z5aGrX6Ld53aI2Pc2DWOuxtE7pVfX2blRfcCbU7_Kvl6eP2dvxXzx-j57mheacRoLVYFukDNh6q5SU1NDxRhthZmKqq3BVBxZk4pPqRGso7xl0NIprXVVNQRadpXdH--m2O8thig3Nuj0HDWg2wZJqEgHhKA8ofUR1d6F4NHI0duN8ntJQB6kybU8SZMHaRKETNLS3t0pQgWteuPVoG34W6YNZ4SyOnGPRw7Tf3cWvQza4qCTTI86ys7Zf5J-AEDDh0w</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Chow, Stanley K.H.</creator><creator>Lee, Eric W.M.</creator><creator>Li, Danny H.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20121201</creationdate><title>Short-term prediction of photovoltaic energy generation by intelligent approach</title><author>Chow, Stanley K.H. ; Lee, Eric W.M. ; Li, Danny H.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a40c6e738f5d4a9f504332b8f984b50f47e36666792f83d27b30b2925c44610b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial neural network</topic><topic>Building technical equipments</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Energy</topic><topic>Energy management and energy conservation in building</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Photovoltaic panel</topic><topic>Solar angle</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chow, Stanley K.H.</creatorcontrib><creatorcontrib>Lee, Eric W.M.</creatorcontrib><creatorcontrib>Li, Danny H.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chow, Stanley K.H.</au><au>Lee, Eric W.M.</au><au>Li, Danny H.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term prediction of photovoltaic energy generation by intelligent approach</atitle><jtitle>Energy and buildings</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>55</volume><spage>660</spage><epage>667</epage><pages>660-667</pages><issn>0378-7788</issn><coden>ENEBDR</coden><abstract>► ANN correlates metrological data and energy generated by PV. ► ANN hidden neurons number estimated by rule of thumb is justified statistically. ► Three parameters predict real-time and up-to-20-min lapse PV energy generated. ► The result offers a 95% confidence level of prediction crucial to power management. Population growth and quickly depleting fossil fuel reserves are creating demand for the development and use of renewable energy resources such as solar energy. The evaluation and forecasting of energy demands have become concerns for facility managers, and predicting energy generation plays a critical role in power-system management, scheduling, and dispatch operations. A reliable energy supply forecast helps to prevent unexpected loads and provides vital information for decisions made on energy generation and purchase. However, study of energy generation prediction by the photovoltaic (PV) system has been limited over the years, especially concerning short-term predictions. This study will adopt the artificial neural network (ANN) to mimic the nonlinear correlation between the metrological parameters and energy generated by the PV system. It aims to find that short-term prediction performance is comparable with real-time prediction performance when ahead solar angles are applied to the predictions.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2012.08.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2012-12, Vol.55, p.660-667
issn 0378-7788
language eng
recordid cdi_proquest_miscellaneous_1283668827
source Elsevier ScienceDirect Journals
subjects Applied sciences
Artificial neural network
Building technical equipments
Buildings
Buildings. Public works
Energy
Energy management and energy conservation in building
Environmental engineering
Exact sciences and technology
Natural energy
Photovoltaic conversion
Photovoltaic panel
Solar angle
Solar energy
title Short-term prediction of photovoltaic energy generation by intelligent approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20prediction%20of%20photovoltaic%20energy%20generation%20by%20intelligent%20approach&rft.jtitle=Energy%20and%20buildings&rft.au=Chow,%20Stanley%20K.H.&rft.date=2012-12-01&rft.volume=55&rft.spage=660&rft.epage=667&rft.pages=660-667&rft.issn=0378-7788&rft.coden=ENEBDR&rft_id=info:doi/10.1016/j.enbuild.2012.08.011&rft_dat=%3Cproquest_cross%3E1283668827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283668827&rft_id=info:pmid/&rft_els_id=S037877881200415X&rfr_iscdi=true