Short-term prediction of photovoltaic energy generation by intelligent approach
► ANN correlates metrological data and energy generated by PV. ► ANN hidden neurons number estimated by rule of thumb is justified statistically. ► Three parameters predict real-time and up-to-20-min lapse PV energy generated. ► The result offers a 95% confidence level of prediction crucial to power...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2012-12, Vol.55, p.660-667 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 667 |
---|---|
container_issue | |
container_start_page | 660 |
container_title | Energy and buildings |
container_volume | 55 |
creator | Chow, Stanley K.H. Lee, Eric W.M. Li, Danny H.W. |
description | ► ANN correlates metrological data and energy generated by PV. ► ANN hidden neurons number estimated by rule of thumb is justified statistically. ► Three parameters predict real-time and up-to-20-min lapse PV energy generated. ► The result offers a 95% confidence level of prediction crucial to power management.
Population growth and quickly depleting fossil fuel reserves are creating demand for the development and use of renewable energy resources such as solar energy. The evaluation and forecasting of energy demands have become concerns for facility managers, and predicting energy generation plays a critical role in power-system management, scheduling, and dispatch operations. A reliable energy supply forecast helps to prevent unexpected loads and provides vital information for decisions made on energy generation and purchase. However, study of energy generation prediction by the photovoltaic (PV) system has been limited over the years, especially concerning short-term predictions. This study will adopt the artificial neural network (ANN) to mimic the nonlinear correlation between the metrological parameters and energy generated by the PV system. It aims to find that short-term prediction performance is comparable with real-time prediction performance when ahead solar angles are applied to the predictions. |
doi_str_mv | 10.1016/j.enbuild.2012.08.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283668827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877881200415X</els_id><sourcerecordid>1283668827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a40c6e738f5d4a9f504332b8f984b50f47e36666792f83d27b30b2925c44610b3</originalsourceid><addsrcrecordid>eNqFkD1rwzAQhj200PTjJxS8FLrYPUm2pUylhH5BIEPbWcjyKVFwLFdSAvn3VZrQtbccHM_dKz1ZdkugJECah3WJQ7u1fVdSILQEUQIhZ9kEGBcF50JcZJchrAGgqTmZZIuPlfOxiOg3-eixszpaN-TO5OPKRbdzfVRW5zigX-7z5aGrX6Ld53aI2Pc2DWOuxtE7pVfX2blRfcCbU7_Kvl6eP2dvxXzx-j57mheacRoLVYFukDNh6q5SU1NDxRhthZmKqq3BVBxZk4pPqRGso7xl0NIprXVVNQRadpXdH--m2O8thig3Nuj0HDWg2wZJqEgHhKA8ofUR1d6F4NHI0duN8ntJQB6kybU8SZMHaRKETNLS3t0pQgWteuPVoG34W6YNZ4SyOnGPRw7Tf3cWvQza4qCTTI86ys7Zf5J-AEDDh0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283668827</pqid></control><display><type>article</type><title>Short-term prediction of photovoltaic energy generation by intelligent approach</title><source>Elsevier ScienceDirect Journals</source><creator>Chow, Stanley K.H. ; Lee, Eric W.M. ; Li, Danny H.W.</creator><creatorcontrib>Chow, Stanley K.H. ; Lee, Eric W.M. ; Li, Danny H.W.</creatorcontrib><description>► ANN correlates metrological data and energy generated by PV. ► ANN hidden neurons number estimated by rule of thumb is justified statistically. ► Three parameters predict real-time and up-to-20-min lapse PV energy generated. ► The result offers a 95% confidence level of prediction crucial to power management.
Population growth and quickly depleting fossil fuel reserves are creating demand for the development and use of renewable energy resources such as solar energy. The evaluation and forecasting of energy demands have become concerns for facility managers, and predicting energy generation plays a critical role in power-system management, scheduling, and dispatch operations. A reliable energy supply forecast helps to prevent unexpected loads and provides vital information for decisions made on energy generation and purchase. However, study of energy generation prediction by the photovoltaic (PV) system has been limited over the years, especially concerning short-term predictions. This study will adopt the artificial neural network (ANN) to mimic the nonlinear correlation between the metrological parameters and energy generated by the PV system. It aims to find that short-term prediction performance is comparable with real-time prediction performance when ahead solar angles are applied to the predictions.</description><identifier>ISSN: 0378-7788</identifier><identifier>DOI: 10.1016/j.enbuild.2012.08.011</identifier><identifier>CODEN: ENEBDR</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Artificial neural network ; Building technical equipments ; Buildings ; Buildings. Public works ; Energy ; Energy management and energy conservation in building ; Environmental engineering ; Exact sciences and technology ; Natural energy ; Photovoltaic conversion ; Photovoltaic panel ; Solar angle ; Solar energy</subject><ispartof>Energy and buildings, 2012-12, Vol.55, p.660-667</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a40c6e738f5d4a9f504332b8f984b50f47e36666792f83d27b30b2925c44610b3</citedby><cites>FETCH-LOGICAL-c372t-a40c6e738f5d4a9f504332b8f984b50f47e36666792f83d27b30b2925c44610b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2012.08.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26731235$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chow, Stanley K.H.</creatorcontrib><creatorcontrib>Lee, Eric W.M.</creatorcontrib><creatorcontrib>Li, Danny H.W.</creatorcontrib><title>Short-term prediction of photovoltaic energy generation by intelligent approach</title><title>Energy and buildings</title><description>► ANN correlates metrological data and energy generated by PV. ► ANN hidden neurons number estimated by rule of thumb is justified statistically. ► Three parameters predict real-time and up-to-20-min lapse PV energy generated. ► The result offers a 95% confidence level of prediction crucial to power management.
Population growth and quickly depleting fossil fuel reserves are creating demand for the development and use of renewable energy resources such as solar energy. The evaluation and forecasting of energy demands have become concerns for facility managers, and predicting energy generation plays a critical role in power-system management, scheduling, and dispatch operations. A reliable energy supply forecast helps to prevent unexpected loads and provides vital information for decisions made on energy generation and purchase. However, study of energy generation prediction by the photovoltaic (PV) system has been limited over the years, especially concerning short-term predictions. This study will adopt the artificial neural network (ANN) to mimic the nonlinear correlation between the metrological parameters and energy generated by the PV system. It aims to find that short-term prediction performance is comparable with real-time prediction performance when ahead solar angles are applied to the predictions.</description><subject>Applied sciences</subject><subject>Artificial neural network</subject><subject>Building technical equipments</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Energy</subject><subject>Energy management and energy conservation in building</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Photovoltaic panel</subject><subject>Solar angle</subject><subject>Solar energy</subject><issn>0378-7788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkD1rwzAQhj200PTjJxS8FLrYPUm2pUylhH5BIEPbWcjyKVFwLFdSAvn3VZrQtbccHM_dKz1ZdkugJECah3WJQ7u1fVdSILQEUQIhZ9kEGBcF50JcZJchrAGgqTmZZIuPlfOxiOg3-eixszpaN-TO5OPKRbdzfVRW5zigX-7z5aGrX6Ld53aI2Pc2DWOuxtE7pVfX2blRfcCbU7_Kvl6eP2dvxXzx-j57mheacRoLVYFukDNh6q5SU1NDxRhthZmKqq3BVBxZk4pPqRGso7xl0NIprXVVNQRadpXdH--m2O8thig3Nuj0HDWg2wZJqEgHhKA8ofUR1d6F4NHI0duN8ntJQB6kybU8SZMHaRKETNLS3t0pQgWteuPVoG34W6YNZ4SyOnGPRw7Tf3cWvQza4qCTTI86ys7Zf5J-AEDDh0w</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Chow, Stanley K.H.</creator><creator>Lee, Eric W.M.</creator><creator>Li, Danny H.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20121201</creationdate><title>Short-term prediction of photovoltaic energy generation by intelligent approach</title><author>Chow, Stanley K.H. ; Lee, Eric W.M. ; Li, Danny H.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a40c6e738f5d4a9f504332b8f984b50f47e36666792f83d27b30b2925c44610b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial neural network</topic><topic>Building technical equipments</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Energy</topic><topic>Energy management and energy conservation in building</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Photovoltaic panel</topic><topic>Solar angle</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chow, Stanley K.H.</creatorcontrib><creatorcontrib>Lee, Eric W.M.</creatorcontrib><creatorcontrib>Li, Danny H.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chow, Stanley K.H.</au><au>Lee, Eric W.M.</au><au>Li, Danny H.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term prediction of photovoltaic energy generation by intelligent approach</atitle><jtitle>Energy and buildings</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>55</volume><spage>660</spage><epage>667</epage><pages>660-667</pages><issn>0378-7788</issn><coden>ENEBDR</coden><abstract>► ANN correlates metrological data and energy generated by PV. ► ANN hidden neurons number estimated by rule of thumb is justified statistically. ► Three parameters predict real-time and up-to-20-min lapse PV energy generated. ► The result offers a 95% confidence level of prediction crucial to power management.
Population growth and quickly depleting fossil fuel reserves are creating demand for the development and use of renewable energy resources such as solar energy. The evaluation and forecasting of energy demands have become concerns for facility managers, and predicting energy generation plays a critical role in power-system management, scheduling, and dispatch operations. A reliable energy supply forecast helps to prevent unexpected loads and provides vital information for decisions made on energy generation and purchase. However, study of energy generation prediction by the photovoltaic (PV) system has been limited over the years, especially concerning short-term predictions. This study will adopt the artificial neural network (ANN) to mimic the nonlinear correlation between the metrological parameters and energy generated by the PV system. It aims to find that short-term prediction performance is comparable with real-time prediction performance when ahead solar angles are applied to the predictions.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2012.08.011</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7788 |
ispartof | Energy and buildings, 2012-12, Vol.55, p.660-667 |
issn | 0378-7788 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283668827 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Artificial neural network Building technical equipments Buildings Buildings. Public works Energy Energy management and energy conservation in building Environmental engineering Exact sciences and technology Natural energy Photovoltaic conversion Photovoltaic panel Solar angle Solar energy |
title | Short-term prediction of photovoltaic energy generation by intelligent approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20prediction%20of%20photovoltaic%20energy%20generation%20by%20intelligent%20approach&rft.jtitle=Energy%20and%20buildings&rft.au=Chow,%20Stanley%20K.H.&rft.date=2012-12-01&rft.volume=55&rft.spage=660&rft.epage=667&rft.pages=660-667&rft.issn=0378-7788&rft.coden=ENEBDR&rft_id=info:doi/10.1016/j.enbuild.2012.08.011&rft_dat=%3Cproquest_cross%3E1283668827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283668827&rft_id=info:pmid/&rft_els_id=S037877881200415X&rfr_iscdi=true |