Global existence and boundedness of classical solutions to a parabolicaparabolic chemotaxis system

This paper deals with the global existence and boundedness of solutions for the chemotaxis system { u t = I u - a a (u I (v) a v) + f (u) , x a ICO , t > 0 , v t = I v - v + u g (u) , x a ICO , t > 0 , under homogeneous Neumann boundary conditions in a smooth bounded domain ICO a R n , with no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2013-06, Vol.14 (3), p.1634-1642
Hauptverfasser: Mu, Chunlai, Wang, Liangchen, Zheng, Pan, Zhang, Qingna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1642
container_issue 3
container_start_page 1634
container_title Nonlinear analysis: real world applications
container_volume 14
creator Mu, Chunlai
Wang, Liangchen
Zheng, Pan
Zhang, Qingna
description This paper deals with the global existence and boundedness of solutions for the chemotaxis system { u t = I u - a a (u I (v) a v) + f (u) , x a ICO , t > 0 , v t = I v - v + u g (u) , x a ICO , t > 0 , under homogeneous Neumann boundary conditions in a smooth bounded domain ICO a R n , with non-negative initial data u 0 a C 0 (ICO A=) and v 0 a W 1 , l (ICO) (for some l > n). The functions I and f are assumed to generalize the chemotactic sensitivity function I (s) = I 0 (1 + beta s) 2 , s aY 0 , with beta aY 0 , I 0 > 0 and the logistic source f (s) = a s - b s 2 , s aY 0 , with a > 0 , b > 0 , respectively. Here g (s) with s aY 0 is a non-negative function. It is proved that the corresponding initialaboundary value problem possesses a unique global classical solution that is uniformly bounded if some technical conditions are fulfilled.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283668740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283668740</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_12836687403</originalsourceid><addsrcrecordid>eNqVjLsOgkAQRbfQRHz8w5Q2JKwQoDc-PsCezC5DxCw7yCyJ_r1bGHure5J7chYq0UVZp_qg65VaizyyTFc614kyF8cGHdCrl0DeEqBvwfDsW2o9iQB3YB2K9DZqwm4OPXuBwIAw4oSGXbx-BPZOAweMPZB3bA5btezQCe2-u1H78-l2vKbjxM-ZJDRDL5acQ088S6MPdV6WdVVk-R_qB4_oSk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283668740</pqid></control><display><type>article</type><title>Global existence and boundedness of classical solutions to a parabolicaparabolic chemotaxis system</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mu, Chunlai ; Wang, Liangchen ; Zheng, Pan ; Zhang, Qingna</creator><creatorcontrib>Mu, Chunlai ; Wang, Liangchen ; Zheng, Pan ; Zhang, Qingna</creatorcontrib><description>This paper deals with the global existence and boundedness of solutions for the chemotaxis system { u t = I u - a a (u I (v) a v) + f (u) , x a ICO , t &gt; 0 , v t = I v - v + u g (u) , x a ICO , t &gt; 0 , under homogeneous Neumann boundary conditions in a smooth bounded domain ICO a R n , with non-negative initial data u 0 a C 0 (ICO A=) and v 0 a W 1 , l (ICO) (for some l &gt; n). The functions I and f are assumed to generalize the chemotactic sensitivity function I (s) = I 0 (1 + beta s) 2 , s aY 0 , with beta aY 0 , I 0 &gt; 0 and the logistic source f (s) = a s - b s 2 , s aY 0 , with a &gt; 0 , b &gt; 0 , respectively. Here g (s) with s aY 0 is a non-negative function. It is proved that the corresponding initialaboundary value problem possesses a unique global classical solution that is uniformly bounded if some technical conditions are fulfilled.</description><identifier>ISSN: 1468-1218</identifier><language>eng</language><ispartof>Nonlinear analysis: real world applications, 2013-06, Vol.14 (3), p.1634-1642</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Mu, Chunlai</creatorcontrib><creatorcontrib>Wang, Liangchen</creatorcontrib><creatorcontrib>Zheng, Pan</creatorcontrib><creatorcontrib>Zhang, Qingna</creatorcontrib><title>Global existence and boundedness of classical solutions to a parabolicaparabolic chemotaxis system</title><title>Nonlinear analysis: real world applications</title><description>This paper deals with the global existence and boundedness of solutions for the chemotaxis system { u t = I u - a a (u I (v) a v) + f (u) , x a ICO , t &gt; 0 , v t = I v - v + u g (u) , x a ICO , t &gt; 0 , under homogeneous Neumann boundary conditions in a smooth bounded domain ICO a R n , with non-negative initial data u 0 a C 0 (ICO A=) and v 0 a W 1 , l (ICO) (for some l &gt; n). The functions I and f are assumed to generalize the chemotactic sensitivity function I (s) = I 0 (1 + beta s) 2 , s aY 0 , with beta aY 0 , I 0 &gt; 0 and the logistic source f (s) = a s - b s 2 , s aY 0 , with a &gt; 0 , b &gt; 0 , respectively. Here g (s) with s aY 0 is a non-negative function. It is proved that the corresponding initialaboundary value problem possesses a unique global classical solution that is uniformly bounded if some technical conditions are fulfilled.</description><issn>1468-1218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjLsOgkAQRbfQRHz8w5Q2JKwQoDc-PsCezC5DxCw7yCyJ_r1bGHure5J7chYq0UVZp_qg65VaizyyTFc614kyF8cGHdCrl0DeEqBvwfDsW2o9iQB3YB2K9DZqwm4OPXuBwIAw4oSGXbx-BPZOAweMPZB3bA5btezQCe2-u1H78-l2vKbjxM-ZJDRDL5acQ088S6MPdV6WdVVk-R_qB4_oSk4</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Mu, Chunlai</creator><creator>Wang, Liangchen</creator><creator>Zheng, Pan</creator><creator>Zhang, Qingna</creator><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130601</creationdate><title>Global existence and boundedness of classical solutions to a parabolicaparabolic chemotaxis system</title><author>Mu, Chunlai ; Wang, Liangchen ; Zheng, Pan ; Zhang, Qingna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_12836687403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Chunlai</creatorcontrib><creatorcontrib>Wang, Liangchen</creatorcontrib><creatorcontrib>Zheng, Pan</creatorcontrib><creatorcontrib>Zhang, Qingna</creatorcontrib><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Chunlai</au><au>Wang, Liangchen</au><au>Zheng, Pan</au><au>Zhang, Qingna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global existence and boundedness of classical solutions to a parabolicaparabolic chemotaxis system</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>14</volume><issue>3</issue><spage>1634</spage><epage>1642</epage><pages>1634-1642</pages><issn>1468-1218</issn><abstract>This paper deals with the global existence and boundedness of solutions for the chemotaxis system { u t = I u - a a (u I (v) a v) + f (u) , x a ICO , t &gt; 0 , v t = I v - v + u g (u) , x a ICO , t &gt; 0 , under homogeneous Neumann boundary conditions in a smooth bounded domain ICO a R n , with non-negative initial data u 0 a C 0 (ICO A=) and v 0 a W 1 , l (ICO) (for some l &gt; n). The functions I and f are assumed to generalize the chemotactic sensitivity function I (s) = I 0 (1 + beta s) 2 , s aY 0 , with beta aY 0 , I 0 &gt; 0 and the logistic source f (s) = a s - b s 2 , s aY 0 , with a &gt; 0 , b &gt; 0 , respectively. Here g (s) with s aY 0 is a non-negative function. It is proved that the corresponding initialaboundary value problem possesses a unique global classical solution that is uniformly bounded if some technical conditions are fulfilled.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2013-06, Vol.14 (3), p.1634-1642
issn 1468-1218
language eng
recordid cdi_proquest_miscellaneous_1283668740
source Elsevier ScienceDirect Journals Complete
title Global existence and boundedness of classical solutions to a parabolicaparabolic chemotaxis system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A58%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20existence%20and%20boundedness%20of%20classical%20solutions%20to%20a%20parabolicaparabolic%20chemotaxis%20system&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Mu,%20Chunlai&rft.date=2013-06-01&rft.volume=14&rft.issue=3&rft.spage=1634&rft.epage=1642&rft.pages=1634-1642&rft.issn=1468-1218&rft_id=info:doi/&rft_dat=%3Cproquest%3E1283668740%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283668740&rft_id=info:pmid/&rfr_iscdi=true