The effect of intense short pulse laser shapes on generating of the optimum wakefield and dissociation of methane molecule

The optimum convolution of dual short pulse for producing the maximum wakefield and the highest dissociation probability of CH4 has been investigated. By using three fundamental shapes of pulses though four different arrangements, the generated wake are considered in plasma. It is found that when th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser and particle beams 2012-09, Vol.30 (3), p.357-367
Hauptverfasser: Irani, E., Zare, S., Navid, H.A., Dehghani, Z., Sadighi-Bonabi, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 367
container_issue 3
container_start_page 357
container_title Laser and particle beams
container_volume 30
creator Irani, E.
Zare, S.
Navid, H.A.
Dehghani, Z.
Sadighi-Bonabi, R.
description The optimum convolution of dual short pulse for producing the maximum wakefield and the highest dissociation probability of CH4 has been investigated. By using three fundamental shapes of pulses though four different arrangements, the generated wake are considered in plasma. It is found that when the first and second pulses were rectangular–triangular and sinusoidal pulse shapes, respectively, the resultant wakefield amplitude is the highest. This effect opens up a new novel way by pulse shaping mechanism in the photo dissociation dynamics of molecules and controlling of chemical reactions in the desired channels by short pulse intense lasers for reducing the computation time of genetic algorithm model. Using field assisted dissociation model, the dissociation probability for a CH4+ molecule exposed to a 100 femtosecond 8 Jcm−2 Ti:Sapphire laser pulse is calculated. Here, the highest possible dissociation probability of the methane ion is calculated by the gradient optimization method in which the gradient of a function should be in the direction of the local extremes. The C-H molecular bond of CH4+ ion is assumed to be in the same direction as the electric field component of the laser pulse. These results show that there is an excellent match with experimental data. The remarkable feature of this work is that the sensitivity of the dissociation probability of the initial bond length q, is studied and the desired product channel is controlled by variation of the laser intensity and it's time evolution by introducing a characteristic vectored space for intensity and duration of two tailored rectangular femtosecond laser pulses.
doi_str_mv 10.1017/S0263034612000195
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283667704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263034612000195</cupid><sourcerecordid>1283667704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-d7f3d09d1f3f86b6507b4b1096ef0688d19b8efc7236149b298ef8895249feed3</originalsourceid><addsrcrecordid>eNp9kc1q3TAQRkVpoLdJHqA7QTfZuNVIsmwtS2jSQKCLppCdka3RvUpty5FkSvP0kUkWoSVd6WfO-WZgCPkA7BMwaD7_YFwJJqQCzhgDXb8hO5BKVy0Tt2_JbitXW_0deZ_SXWHqWvAdebg5IEXncMg0OOrnjHNCmg4hZrqsY7mPJmEsP2bBRMNM9zhjNNnP-83IxQ9L9tM60d_mFzqPo6VmttT6lMLgC1mkQk6YD2ZGOoURh3XEE3LkTGlw-nwek58XX2_Ov1XX3y-vzr9cV4PkkCvbOGGZtuCEa1Wvatb0sgemFTqm2taC7lt0Q8OFAql7rsurbXXNpXaIVhyTs6fcJYb7FVPuJp8GHMcyTFhTB7wVSjUNkwX9-Bd6F9Y4l-k6rlkDoIVk_6OAlyRVS71R8EQNMaQU0XVL9JOJfzpg3baz7p-dFUc8O2bqo7d7fBH9qvUIIkeYbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266765490</pqid></control><display><type>article</type><title>The effect of intense short pulse laser shapes on generating of the optimum wakefield and dissociation of methane molecule</title><source>Cambridge University Press Journals Complete</source><creator>Irani, E. ; Zare, S. ; Navid, H.A. ; Dehghani, Z. ; Sadighi-Bonabi, R.</creator><creatorcontrib>Irani, E. ; Zare, S. ; Navid, H.A. ; Dehghani, Z. ; Sadighi-Bonabi, R.</creatorcontrib><description>The optimum convolution of dual short pulse for producing the maximum wakefield and the highest dissociation probability of CH4 has been investigated. By using three fundamental shapes of pulses though four different arrangements, the generated wake are considered in plasma. It is found that when the first and second pulses were rectangular–triangular and sinusoidal pulse shapes, respectively, the resultant wakefield amplitude is the highest. This effect opens up a new novel way by pulse shaping mechanism in the photo dissociation dynamics of molecules and controlling of chemical reactions in the desired channels by short pulse intense lasers for reducing the computation time of genetic algorithm model. Using field assisted dissociation model, the dissociation probability for a CH4+ molecule exposed to a 100 femtosecond 8 Jcm−2 Ti:Sapphire laser pulse is calculated. Here, the highest possible dissociation probability of the methane ion is calculated by the gradient optimization method in which the gradient of a function should be in the direction of the local extremes. The C-H molecular bond of CH4+ ion is assumed to be in the same direction as the electric field component of the laser pulse. These results show that there is an excellent match with experimental data. The remarkable feature of this work is that the sensitivity of the dissociation probability of the initial bond length q, is studied and the desired product channel is controlled by variation of the laser intensity and it's time evolution by introducing a characteristic vectored space for intensity and duration of two tailored rectangular femtosecond laser pulses.</description><identifier>ISSN: 0263-0346</identifier><identifier>EISSN: 1469-803X</identifier><identifier>DOI: 10.1017/S0263034612000195</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Bonding ; Channels ; Charged particles ; Chemical bonds ; Chemical reactions ; Electric fields ; Electrons ; Femtosecond ; Femtosecond pulsed lasers ; Femtosecond pulses ; Genetic algorithms ; Lasers ; Mathematical models ; Methane ; Molecular chemistry ; Optimization ; Plasma ; Propagation ; Sapphire ; Schrodinger equation ; Short pulses</subject><ispartof>Laser and particle beams, 2012-09, Vol.30 (3), p.357-367</ispartof><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-d7f3d09d1f3f86b6507b4b1096ef0688d19b8efc7236149b298ef8895249feed3</citedby><cites>FETCH-LOGICAL-c421t-d7f3d09d1f3f86b6507b4b1096ef0688d19b8efc7236149b298ef8895249feed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263034612000195/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Irani, E.</creatorcontrib><creatorcontrib>Zare, S.</creatorcontrib><creatorcontrib>Navid, H.A.</creatorcontrib><creatorcontrib>Dehghani, Z.</creatorcontrib><creatorcontrib>Sadighi-Bonabi, R.</creatorcontrib><title>The effect of intense short pulse laser shapes on generating of the optimum wakefield and dissociation of methane molecule</title><title>Laser and particle beams</title><description>The optimum convolution of dual short pulse for producing the maximum wakefield and the highest dissociation probability of CH4 has been investigated. By using three fundamental shapes of pulses though four different arrangements, the generated wake are considered in plasma. It is found that when the first and second pulses were rectangular–triangular and sinusoidal pulse shapes, respectively, the resultant wakefield amplitude is the highest. This effect opens up a new novel way by pulse shaping mechanism in the photo dissociation dynamics of molecules and controlling of chemical reactions in the desired channels by short pulse intense lasers for reducing the computation time of genetic algorithm model. Using field assisted dissociation model, the dissociation probability for a CH4+ molecule exposed to a 100 femtosecond 8 Jcm−2 Ti:Sapphire laser pulse is calculated. Here, the highest possible dissociation probability of the methane ion is calculated by the gradient optimization method in which the gradient of a function should be in the direction of the local extremes. The C-H molecular bond of CH4+ ion is assumed to be in the same direction as the electric field component of the laser pulse. These results show that there is an excellent match with experimental data. The remarkable feature of this work is that the sensitivity of the dissociation probability of the initial bond length q, is studied and the desired product channel is controlled by variation of the laser intensity and it's time evolution by introducing a characteristic vectored space for intensity and duration of two tailored rectangular femtosecond laser pulses.</description><subject>Bonding</subject><subject>Channels</subject><subject>Charged particles</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Femtosecond</subject><subject>Femtosecond pulsed lasers</subject><subject>Femtosecond pulses</subject><subject>Genetic algorithms</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Molecular chemistry</subject><subject>Optimization</subject><subject>Plasma</subject><subject>Propagation</subject><subject>Sapphire</subject><subject>Schrodinger equation</subject><subject>Short pulses</subject><issn>0263-0346</issn><issn>1469-803X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1q3TAQRkVpoLdJHqA7QTfZuNVIsmwtS2jSQKCLppCdka3RvUpty5FkSvP0kUkWoSVd6WfO-WZgCPkA7BMwaD7_YFwJJqQCzhgDXb8hO5BKVy0Tt2_JbitXW_0deZ_SXWHqWvAdebg5IEXncMg0OOrnjHNCmg4hZrqsY7mPJmEsP2bBRMNM9zhjNNnP-83IxQ9L9tM60d_mFzqPo6VmttT6lMLgC1mkQk6YD2ZGOoURh3XEE3LkTGlw-nwek58XX2_Ov1XX3y-vzr9cV4PkkCvbOGGZtuCEa1Wvatb0sgemFTqm2taC7lt0Q8OFAql7rsurbXXNpXaIVhyTs6fcJYb7FVPuJp8GHMcyTFhTB7wVSjUNkwX9-Bd6F9Y4l-k6rlkDoIVk_6OAlyRVS71R8EQNMaQU0XVL9JOJfzpg3baz7p-dFUc8O2bqo7d7fBH9qvUIIkeYbQ</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Irani, E.</creator><creator>Zare, S.</creator><creator>Navid, H.A.</creator><creator>Dehghani, Z.</creator><creator>Sadighi-Bonabi, R.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201209</creationdate><title>The effect of intense short pulse laser shapes on generating of the optimum wakefield and dissociation of methane molecule</title><author>Irani, E. ; Zare, S. ; Navid, H.A. ; Dehghani, Z. ; Sadighi-Bonabi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-d7f3d09d1f3f86b6507b4b1096ef0688d19b8efc7236149b298ef8895249feed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bonding</topic><topic>Channels</topic><topic>Charged particles</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Femtosecond</topic><topic>Femtosecond pulsed lasers</topic><topic>Femtosecond pulses</topic><topic>Genetic algorithms</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Molecular chemistry</topic><topic>Optimization</topic><topic>Plasma</topic><topic>Propagation</topic><topic>Sapphire</topic><topic>Schrodinger equation</topic><topic>Short pulses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irani, E.</creatorcontrib><creatorcontrib>Zare, S.</creatorcontrib><creatorcontrib>Navid, H.A.</creatorcontrib><creatorcontrib>Dehghani, Z.</creatorcontrib><creatorcontrib>Sadighi-Bonabi, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Laser and particle beams</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irani, E.</au><au>Zare, S.</au><au>Navid, H.A.</au><au>Dehghani, Z.</au><au>Sadighi-Bonabi, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of intense short pulse laser shapes on generating of the optimum wakefield and dissociation of methane molecule</atitle><jtitle>Laser and particle beams</jtitle><date>2012-09</date><risdate>2012</risdate><volume>30</volume><issue>3</issue><spage>357</spage><epage>367</epage><pages>357-367</pages><issn>0263-0346</issn><eissn>1469-803X</eissn><abstract>The optimum convolution of dual short pulse for producing the maximum wakefield and the highest dissociation probability of CH4 has been investigated. By using three fundamental shapes of pulses though four different arrangements, the generated wake are considered in plasma. It is found that when the first and second pulses were rectangular–triangular and sinusoidal pulse shapes, respectively, the resultant wakefield amplitude is the highest. This effect opens up a new novel way by pulse shaping mechanism in the photo dissociation dynamics of molecules and controlling of chemical reactions in the desired channels by short pulse intense lasers for reducing the computation time of genetic algorithm model. Using field assisted dissociation model, the dissociation probability for a CH4+ molecule exposed to a 100 femtosecond 8 Jcm−2 Ti:Sapphire laser pulse is calculated. Here, the highest possible dissociation probability of the methane ion is calculated by the gradient optimization method in which the gradient of a function should be in the direction of the local extremes. The C-H molecular bond of CH4+ ion is assumed to be in the same direction as the electric field component of the laser pulse. These results show that there is an excellent match with experimental data. The remarkable feature of this work is that the sensitivity of the dissociation probability of the initial bond length q, is studied and the desired product channel is controlled by variation of the laser intensity and it's time evolution by introducing a characteristic vectored space for intensity and duration of two tailored rectangular femtosecond laser pulses.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263034612000195</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-0346
ispartof Laser and particle beams, 2012-09, Vol.30 (3), p.357-367
issn 0263-0346
1469-803X
language eng
recordid cdi_proquest_miscellaneous_1283667704
source Cambridge University Press Journals Complete
subjects Bonding
Channels
Charged particles
Chemical bonds
Chemical reactions
Electric fields
Electrons
Femtosecond
Femtosecond pulsed lasers
Femtosecond pulses
Genetic algorithms
Lasers
Mathematical models
Methane
Molecular chemistry
Optimization
Plasma
Propagation
Sapphire
Schrodinger equation
Short pulses
title The effect of intense short pulse laser shapes on generating of the optimum wakefield and dissociation of methane molecule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20intense%20short%20pulse%20laser%20shapes%20on%20generating%20of%20the%20optimum%20wakefield%20and%20dissociation%20of%20methane%20molecule&rft.jtitle=Laser%20and%20particle%20beams&rft.au=Irani,%20E.&rft.date=2012-09&rft.volume=30&rft.issue=3&rft.spage=357&rft.epage=367&rft.pages=357-367&rft.issn=0263-0346&rft.eissn=1469-803X&rft_id=info:doi/10.1017/S0263034612000195&rft_dat=%3Cproquest_cross%3E1283667704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266765490&rft_id=info:pmid/&rft_cupid=10_1017_S0263034612000195&rfr_iscdi=true