Electricity demand estimation using an adaptive neuro-fuzzy network: A case study from the Ontario province – Canada

Electricity is an important asset that influences not only the economy, but political or social security of a country. Reliable and accurate planning and prediction of electricity demand for a country are therefore vital. In this paper, electricity demand in Ontario province of Canada from the year...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2013-01, Vol.49 (1), p.323-328
Hauptverfasser: Zahedi, Gholamreza, Azizi, Saeed, Bahadori, Alireza, Elkamel, Ali, Wan Alwi, Sharifah R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 1
container_start_page 323
container_title Energy (Oxford)
container_volume 49
creator Zahedi, Gholamreza
Azizi, Saeed
Bahadori, Alireza
Elkamel, Ali
Wan Alwi, Sharifah R.
description Electricity is an important asset that influences not only the economy, but political or social security of a country. Reliable and accurate planning and prediction of electricity demand for a country are therefore vital. In this paper, electricity demand in Ontario province of Canada from the year 1976–2005 is modeled by using an (adaptive neuro fuzzy inference system) ANFIS. A neuro fuzzy structure can be defined as an ANN (artificial neural network) which is trained by experimental data to find the parameters of (fuzzy inference system) FIS. Inputs for the model include number of employment, (gross domestic product) GDP, population, dwelling count and two meteorological parameters related to annual weather temperature. The data were collected and screened using statistical methods. Then, based on the data, a neuro-fuzzy model for the electricity demand is built. It was found that electricity demand is most sensitive to employment. ► Energy demand can be forecasted via artificial intelligent techniques. ► Employment is the most affecting parameter on energy demand. ► The neuro fuzzy model is capable of extrapolating the data very well.
doi_str_mv 10.1016/j.energy.2012.10.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283665998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544212007815</els_id><sourcerecordid>1283665998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-bd3f9ffc534af535e8bcc11a1c83a835ea217d643e10a0950000d9af1d58d6003</originalsourceid><addsrcrecordid>eNp9kc1u1DAQgHMAqaXlDSrhCxKXbD1xYhIOSNWq_EiVeoCerak9Xrxk7cV2FqWnvgNv2CfBq1QcOdkeffP3uaougK-Ag7zcrshT3MyrhkNTQisOw4vqlAvJ665tm5PqVUpbznnXD8NpdbgeSefotMszM7RDbxil7HaYXfBsSs5vGHqGBvfZHYh5mmKo7fTwMJd7_h3izw_simlMxFKezMxsDDuWfxC79RmjC2wfw8F5Tezp8Q9boy-1zquXFsdEr5_Ps-ru0_X39Zf65vbz1_XVTa3FIHJ9b4QdrNWdaNF2oqP-XmsABN0L7MsbG3hvZCsIOPKhK2txM6AF0_VGci7OqndL3TLDr6kspnYuaRpH9BSmpKDphZTdMPQFbRdUx5BSJKv2sWiIswKujmrVVi1q1VHtMVrUlrS3zx0waRxtRK9d-pfbyB4A5JF7s3AWg8JNLMzdt1KoTMll2wIU4uNCUBFycBRV0o6KN-Ni-SNlgvv_KH8BXLmevA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283665998</pqid></control><display><type>article</type><title>Electricity demand estimation using an adaptive neuro-fuzzy network: A case study from the Ontario province – Canada</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zahedi, Gholamreza ; Azizi, Saeed ; Bahadori, Alireza ; Elkamel, Ali ; Wan Alwi, Sharifah R.</creator><creatorcontrib>Zahedi, Gholamreza ; Azizi, Saeed ; Bahadori, Alireza ; Elkamel, Ali ; Wan Alwi, Sharifah R.</creatorcontrib><description>Electricity is an important asset that influences not only the economy, but political or social security of a country. Reliable and accurate planning and prediction of electricity demand for a country are therefore vital. In this paper, electricity demand in Ontario province of Canada from the year 1976–2005 is modeled by using an (adaptive neuro fuzzy inference system) ANFIS. A neuro fuzzy structure can be defined as an ANN (artificial neural network) which is trained by experimental data to find the parameters of (fuzzy inference system) FIS. Inputs for the model include number of employment, (gross domestic product) GDP, population, dwelling count and two meteorological parameters related to annual weather temperature. The data were collected and screened using statistical methods. Then, based on the data, a neuro-fuzzy model for the electricity demand is built. It was found that electricity demand is most sensitive to employment. ► Energy demand can be forecasted via artificial intelligent techniques. ► Employment is the most affecting parameter on energy demand. ► The neuro fuzzy model is capable of extrapolating the data very well.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2012.10.019</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; case studies ; Demand ; Electricity ; Electricity demand ; employment ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Forecasting ; Fuzzy ; Fuzzy logic ; Fuzzy systems ; gross domestic product ; Marketing ; Mathematical models ; meteorological parameters ; Neural networks ; Neuro-fuzzy ; planning ; politics ; prediction ; statistical analysis ; temperature</subject><ispartof>Energy (Oxford), 2013-01, Vol.49 (1), p.323-328</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-bd3f9ffc534af535e8bcc11a1c83a835ea217d643e10a0950000d9af1d58d6003</citedby><cites>FETCH-LOGICAL-c393t-bd3f9ffc534af535e8bcc11a1c83a835ea217d643e10a0950000d9af1d58d6003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544212007815$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26811169$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zahedi, Gholamreza</creatorcontrib><creatorcontrib>Azizi, Saeed</creatorcontrib><creatorcontrib>Bahadori, Alireza</creatorcontrib><creatorcontrib>Elkamel, Ali</creatorcontrib><creatorcontrib>Wan Alwi, Sharifah R.</creatorcontrib><title>Electricity demand estimation using an adaptive neuro-fuzzy network: A case study from the Ontario province – Canada</title><title>Energy (Oxford)</title><description>Electricity is an important asset that influences not only the economy, but political or social security of a country. Reliable and accurate planning and prediction of electricity demand for a country are therefore vital. In this paper, electricity demand in Ontario province of Canada from the year 1976–2005 is modeled by using an (adaptive neuro fuzzy inference system) ANFIS. A neuro fuzzy structure can be defined as an ANN (artificial neural network) which is trained by experimental data to find the parameters of (fuzzy inference system) FIS. Inputs for the model include number of employment, (gross domestic product) GDP, population, dwelling count and two meteorological parameters related to annual weather temperature. The data were collected and screened using statistical methods. Then, based on the data, a neuro-fuzzy model for the electricity demand is built. It was found that electricity demand is most sensitive to employment. ► Energy demand can be forecasted via artificial intelligent techniques. ► Employment is the most affecting parameter on energy demand. ► The neuro fuzzy model is capable of extrapolating the data very well.</description><subject>Applied sciences</subject><subject>case studies</subject><subject>Demand</subject><subject>Electricity</subject><subject>Electricity demand</subject><subject>employment</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>gross domestic product</subject><subject>Marketing</subject><subject>Mathematical models</subject><subject>meteorological parameters</subject><subject>Neural networks</subject><subject>Neuro-fuzzy</subject><subject>planning</subject><subject>politics</subject><subject>prediction</subject><subject>statistical analysis</subject><subject>temperature</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAQgHMAqaXlDSrhCxKXbD1xYhIOSNWq_EiVeoCerak9Xrxk7cV2FqWnvgNv2CfBq1QcOdkeffP3uaougK-Ag7zcrshT3MyrhkNTQisOw4vqlAvJ665tm5PqVUpbznnXD8NpdbgeSefotMszM7RDbxil7HaYXfBsSs5vGHqGBvfZHYh5mmKo7fTwMJd7_h3izw_simlMxFKezMxsDDuWfxC79RmjC2wfw8F5Tezp8Q9boy-1zquXFsdEr5_Ps-ru0_X39Zf65vbz1_XVTa3FIHJ9b4QdrNWdaNF2oqP-XmsABN0L7MsbG3hvZCsIOPKhK2txM6AF0_VGci7OqndL3TLDr6kspnYuaRpH9BSmpKDphZTdMPQFbRdUx5BSJKv2sWiIswKujmrVVi1q1VHtMVrUlrS3zx0waRxtRK9d-pfbyB4A5JF7s3AWg8JNLMzdt1KoTMll2wIU4uNCUBFycBRV0o6KN-Ni-SNlgvv_KH8BXLmevA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Zahedi, Gholamreza</creator><creator>Azizi, Saeed</creator><creator>Bahadori, Alireza</creator><creator>Elkamel, Ali</creator><creator>Wan Alwi, Sharifah R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Electricity demand estimation using an adaptive neuro-fuzzy network: A case study from the Ontario province – Canada</title><author>Zahedi, Gholamreza ; Azizi, Saeed ; Bahadori, Alireza ; Elkamel, Ali ; Wan Alwi, Sharifah R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-bd3f9ffc534af535e8bcc11a1c83a835ea217d643e10a0950000d9af1d58d6003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>case studies</topic><topic>Demand</topic><topic>Electricity</topic><topic>Electricity demand</topic><topic>employment</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>gross domestic product</topic><topic>Marketing</topic><topic>Mathematical models</topic><topic>meteorological parameters</topic><topic>Neural networks</topic><topic>Neuro-fuzzy</topic><topic>planning</topic><topic>politics</topic><topic>prediction</topic><topic>statistical analysis</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahedi, Gholamreza</creatorcontrib><creatorcontrib>Azizi, Saeed</creatorcontrib><creatorcontrib>Bahadori, Alireza</creatorcontrib><creatorcontrib>Elkamel, Ali</creatorcontrib><creatorcontrib>Wan Alwi, Sharifah R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahedi, Gholamreza</au><au>Azizi, Saeed</au><au>Bahadori, Alireza</au><au>Elkamel, Ali</au><au>Wan Alwi, Sharifah R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electricity demand estimation using an adaptive neuro-fuzzy network: A case study from the Ontario province – Canada</atitle><jtitle>Energy (Oxford)</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>49</volume><issue>1</issue><spage>323</spage><epage>328</epage><pages>323-328</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>Electricity is an important asset that influences not only the economy, but political or social security of a country. Reliable and accurate planning and prediction of electricity demand for a country are therefore vital. In this paper, electricity demand in Ontario province of Canada from the year 1976–2005 is modeled by using an (adaptive neuro fuzzy inference system) ANFIS. A neuro fuzzy structure can be defined as an ANN (artificial neural network) which is trained by experimental data to find the parameters of (fuzzy inference system) FIS. Inputs for the model include number of employment, (gross domestic product) GDP, population, dwelling count and two meteorological parameters related to annual weather temperature. The data were collected and screened using statistical methods. Then, based on the data, a neuro-fuzzy model for the electricity demand is built. It was found that electricity demand is most sensitive to employment. ► Energy demand can be forecasted via artificial intelligent techniques. ► Employment is the most affecting parameter on energy demand. ► The neuro fuzzy model is capable of extrapolating the data very well.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2012.10.019</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2013-01, Vol.49 (1), p.323-328
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_1283665998
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
case studies
Demand
Electricity
Electricity demand
employment
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Forecasting
Fuzzy
Fuzzy logic
Fuzzy systems
gross domestic product
Marketing
Mathematical models
meteorological parameters
Neural networks
Neuro-fuzzy
planning
politics
prediction
statistical analysis
temperature
title Electricity demand estimation using an adaptive neuro-fuzzy network: A case study from the Ontario province – Canada
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electricity%20demand%20estimation%20using%20an%20adaptive%20neuro-fuzzy%20network:%20A%20case%20study%20from%20the%20Ontario%20province%20%E2%80%93%20Canada&rft.jtitle=Energy%20(Oxford)&rft.au=Zahedi,%20Gholamreza&rft.date=2013-01-01&rft.volume=49&rft.issue=1&rft.spage=323&rft.epage=328&rft.pages=323-328&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2012.10.019&rft_dat=%3Cproquest_cross%3E1283665998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283665998&rft_id=info:pmid/&rft_els_id=S0360544212007815&rfr_iscdi=true