Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel

This paper presents results of the impact plate surface modification of the ventilation mill in the Kostolac B power plant (Serbia). The modification is based on 3D numerical simulation of multiphase flow around a grinding wheel. High velocity of sand particles in the ventilation mill causes strong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel processing technology 2013-02, Vol.106, p.555-568
Hauptverfasser: Kozic, Mirko, Ristic, Slavica, Katavic, Boris, Puharic, Mirjana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 568
container_issue
container_start_page 555
container_title Fuel processing technology
container_volume 106
creator Kozic, Mirko
Ristic, Slavica
Katavic, Boris
Puharic, Mirjana
description This paper presents results of the impact plate surface modification of the ventilation mill in the Kostolac B power plant (Serbia). The modification is based on 3D numerical simulation of multiphase flow around a grinding wheel. High velocity of sand particles in the ventilation mill causes strong wear of the impact plates. The multiphase flow simulations of dilute gas–solid are performed in order to obtain the sand particle paths and velocity vectors for a different surface geometry of the mill impact plates. The mixture model of the Euler–Euler approach is used. The results obtained in the numerical simulation serve for the selection of an optimal redesign of the impact plates. The experimental tests of the revitalized mill wearing parts in real exploitation conditions show that the proposed modification, surfacing technologies and (coating) materials give good results. The relative weight loss of the base plate after 1440h period of exploitation in real conditions is 8%, while the weight loss for the hardfaced plate is 5.9% for the second filler. The application of this approach can reduce the number of possible repairs and extends the period between them, resulting in significant economic effects. ► CFD simulations of the multiphase flow in a thermo power plant mill are performed. ► The impact plate parts, exposed to wear, due to sand movement, are defined. ► Distribution and velocity vectors of gas mixture and sand particles are presented. ► Optimal surfacing technology and material are used to optimize the surface hardness. ► Modified plates tested in exploitation conditions have reduced wearing.
doi_str_mv 10.1016/j.fuproc.2012.09.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283663850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378382012003438</els_id><sourcerecordid>1283663850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-6f7628fa85f946a3e1babe828100d0e9649d27642f8c4fab84f1c61232284eb93</originalsourceid><addsrcrecordid>eNp9kU2L1TAUhoMoeB39B4LZCG5a89U03QgyfsKAoM46pOnJnVzSpCbtDPPvzaUXl66SE573TXiC0GtKWkqofH9q3bbkZFtGKGvJ0BLWP0EHqnre9FSpp-hAeK8arhh5jl6UciKEdN3QH9DjT5ig-GPEyWE_L8aueAlmhXI-uIe4-jr5FPHsQ8CjKTDhOvFPOG4zZG9NwMXP24Wqobpf_XJXSexCesAmpy1O2OBj9nHy8Ygf7gDCS_TMmVDg1WW9QrdfPv--_tbc_Pj6_frjTWMFH9ZGul4y5Yzq3CCk4UBHM4JiihIyERikGCbWS8GcssKZUQlHraSMM6YEjAO_Qu_23mrozwZl1bMvFkIwEdJWNGWKS8lVRyoqdtTmVEoGp5fsZ5MfNSX6bFqf9G5an01rMuhqusbeXm4wpepw2UTry78sk72gsqOVe7NzziRtqo2ib3_VIll_Q0rFz00fdgKqkHsPWRfrIVqYfAa76in5_z_lL58QoI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283663850</pqid></control><display><type>article</type><title>Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kozic, Mirko ; Ristic, Slavica ; Katavic, Boris ; Puharic, Mirjana</creator><creatorcontrib>Kozic, Mirko ; Ristic, Slavica ; Katavic, Boris ; Puharic, Mirjana</creatorcontrib><description>This paper presents results of the impact plate surface modification of the ventilation mill in the Kostolac B power plant (Serbia). The modification is based on 3D numerical simulation of multiphase flow around a grinding wheel. High velocity of sand particles in the ventilation mill causes strong wear of the impact plates. The multiphase flow simulations of dilute gas–solid are performed in order to obtain the sand particle paths and velocity vectors for a different surface geometry of the mill impact plates. The mixture model of the Euler–Euler approach is used. The results obtained in the numerical simulation serve for the selection of an optimal redesign of the impact plates. The experimental tests of the revitalized mill wearing parts in real exploitation conditions show that the proposed modification, surfacing technologies and (coating) materials give good results. The relative weight loss of the base plate after 1440h period of exploitation in real conditions is 8%, while the weight loss for the hardfaced plate is 5.9% for the second filler. The application of this approach can reduce the number of possible repairs and extends the period between them, resulting in significant economic effects. ► CFD simulations of the multiphase flow in a thermo power plant mill are performed. ► The impact plate parts, exposed to wear, due to sand movement, are defined. ► Distribution and velocity vectors of gas mixture and sand particles are presented. ► Optimal surfacing technology and material are used to optimize the surface hardness. ► Modified plates tested in exploitation conditions have reduced wearing.</description><identifier>ISSN: 0378-3820</identifier><identifier>EISSN: 1873-7188</identifier><identifier>DOI: 10.1016/j.fuproc.2012.09.027</identifier><identifier>CODEN: FPTEDY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; CFD ; coatings ; economic impact ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flow simulation ; Fuels ; grinding ; mathematical models ; Multiphase flow ; Power plant ; power plants ; sand ; Surfacing technology ; Ventilation mill ; weight loss</subject><ispartof>Fuel processing technology, 2013-02, Vol.106, p.555-568</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-6f7628fa85f946a3e1babe828100d0e9649d27642f8c4fab84f1c61232284eb93</citedby><cites>FETCH-LOGICAL-c439t-6f7628fa85f946a3e1babe828100d0e9649d27642f8c4fab84f1c61232284eb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuproc.2012.09.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26741651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kozic, Mirko</creatorcontrib><creatorcontrib>Ristic, Slavica</creatorcontrib><creatorcontrib>Katavic, Boris</creatorcontrib><creatorcontrib>Puharic, Mirjana</creatorcontrib><title>Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel</title><title>Fuel processing technology</title><description>This paper presents results of the impact plate surface modification of the ventilation mill in the Kostolac B power plant (Serbia). The modification is based on 3D numerical simulation of multiphase flow around a grinding wheel. High velocity of sand particles in the ventilation mill causes strong wear of the impact plates. The multiphase flow simulations of dilute gas–solid are performed in order to obtain the sand particle paths and velocity vectors for a different surface geometry of the mill impact plates. The mixture model of the Euler–Euler approach is used. The results obtained in the numerical simulation serve for the selection of an optimal redesign of the impact plates. The experimental tests of the revitalized mill wearing parts in real exploitation conditions show that the proposed modification, surfacing technologies and (coating) materials give good results. The relative weight loss of the base plate after 1440h period of exploitation in real conditions is 8%, while the weight loss for the hardfaced plate is 5.9% for the second filler. The application of this approach can reduce the number of possible repairs and extends the period between them, resulting in significant economic effects. ► CFD simulations of the multiphase flow in a thermo power plant mill are performed. ► The impact plate parts, exposed to wear, due to sand movement, are defined. ► Distribution and velocity vectors of gas mixture and sand particles are presented. ► Optimal surfacing technology and material are used to optimize the surface hardness. ► Modified plates tested in exploitation conditions have reduced wearing.</description><subject>Applied sciences</subject><subject>CFD</subject><subject>coatings</subject><subject>economic impact</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flow simulation</subject><subject>Fuels</subject><subject>grinding</subject><subject>mathematical models</subject><subject>Multiphase flow</subject><subject>Power plant</subject><subject>power plants</subject><subject>sand</subject><subject>Surfacing technology</subject><subject>Ventilation mill</subject><subject>weight loss</subject><issn>0378-3820</issn><issn>1873-7188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU2L1TAUhoMoeB39B4LZCG5a89U03QgyfsKAoM46pOnJnVzSpCbtDPPvzaUXl66SE573TXiC0GtKWkqofH9q3bbkZFtGKGvJ0BLWP0EHqnre9FSpp-hAeK8arhh5jl6UciKEdN3QH9DjT5ig-GPEyWE_L8aueAlmhXI-uIe4-jr5FPHsQ8CjKTDhOvFPOG4zZG9NwMXP24Wqobpf_XJXSexCesAmpy1O2OBj9nHy8Ygf7gDCS_TMmVDg1WW9QrdfPv--_tbc_Pj6_frjTWMFH9ZGul4y5Yzq3CCk4UBHM4JiihIyERikGCbWS8GcssKZUQlHraSMM6YEjAO_Qu_23mrozwZl1bMvFkIwEdJWNGWKS8lVRyoqdtTmVEoGp5fsZ5MfNSX6bFqf9G5an01rMuhqusbeXm4wpepw2UTry78sk72gsqOVe7NzziRtqo2ib3_VIll_Q0rFz00fdgKqkHsPWRfrIVqYfAa76in5_z_lL58QoI8</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Kozic, Mirko</creator><creator>Ristic, Slavica</creator><creator>Katavic, Boris</creator><creator>Puharic, Mirjana</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130201</creationdate><title>Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel</title><author>Kozic, Mirko ; Ristic, Slavica ; Katavic, Boris ; Puharic, Mirjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-6f7628fa85f946a3e1babe828100d0e9649d27642f8c4fab84f1c61232284eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>CFD</topic><topic>coatings</topic><topic>economic impact</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flow simulation</topic><topic>Fuels</topic><topic>grinding</topic><topic>mathematical models</topic><topic>Multiphase flow</topic><topic>Power plant</topic><topic>power plants</topic><topic>sand</topic><topic>Surfacing technology</topic><topic>Ventilation mill</topic><topic>weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozic, Mirko</creatorcontrib><creatorcontrib>Ristic, Slavica</creatorcontrib><creatorcontrib>Katavic, Boris</creatorcontrib><creatorcontrib>Puharic, Mirjana</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Fuel processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozic, Mirko</au><au>Ristic, Slavica</au><au>Katavic, Boris</au><au>Puharic, Mirjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel</atitle><jtitle>Fuel processing technology</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>106</volume><spage>555</spage><epage>568</epage><pages>555-568</pages><issn>0378-3820</issn><eissn>1873-7188</eissn><coden>FPTEDY</coden><abstract>This paper presents results of the impact plate surface modification of the ventilation mill in the Kostolac B power plant (Serbia). The modification is based on 3D numerical simulation of multiphase flow around a grinding wheel. High velocity of sand particles in the ventilation mill causes strong wear of the impact plates. The multiphase flow simulations of dilute gas–solid are performed in order to obtain the sand particle paths and velocity vectors for a different surface geometry of the mill impact plates. The mixture model of the Euler–Euler approach is used. The results obtained in the numerical simulation serve for the selection of an optimal redesign of the impact plates. The experimental tests of the revitalized mill wearing parts in real exploitation conditions show that the proposed modification, surfacing technologies and (coating) materials give good results. The relative weight loss of the base plate after 1440h period of exploitation in real conditions is 8%, while the weight loss for the hardfaced plate is 5.9% for the second filler. The application of this approach can reduce the number of possible repairs and extends the period between them, resulting in significant economic effects. ► CFD simulations of the multiphase flow in a thermo power plant mill are performed. ► The impact plate parts, exposed to wear, due to sand movement, are defined. ► Distribution and velocity vectors of gas mixture and sand particles are presented. ► Optimal surfacing technology and material are used to optimize the surface hardness. ► Modified plates tested in exploitation conditions have reduced wearing.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fuproc.2012.09.027</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-3820
ispartof Fuel processing technology, 2013-02, Vol.106, p.555-568
issn 0378-3820
1873-7188
language eng
recordid cdi_proquest_miscellaneous_1283663850
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
CFD
coatings
economic impact
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Flow simulation
Fuels
grinding
mathematical models
Multiphase flow
Power plant
power plants
sand
Surfacing technology
Ventilation mill
weight loss
title Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redesign%20of%20impact%20plates%20of%20ventilation%20mill%20based%20on%203D%20numerical%20simulation%20of%20multiphase%20flow%20around%20a%20grinding%20wheel&rft.jtitle=Fuel%20processing%20technology&rft.au=Kozic,%20Mirko&rft.date=2013-02-01&rft.volume=106&rft.spage=555&rft.epage=568&rft.pages=555-568&rft.issn=0378-3820&rft.eissn=1873-7188&rft.coden=FPTEDY&rft_id=info:doi/10.1016/j.fuproc.2012.09.027&rft_dat=%3Cproquest_cross%3E1283663850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283663850&rft_id=info:pmid/&rft_els_id=S0378382012003438&rfr_iscdi=true