Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel
This paper presents results of the impact plate surface modification of the ventilation mill in the Kostolac B power plant (Serbia). The modification is based on 3D numerical simulation of multiphase flow around a grinding wheel. High velocity of sand particles in the ventilation mill causes strong...
Gespeichert in:
Veröffentlicht in: | Fuel processing technology 2013-02, Vol.106, p.555-568 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 568 |
---|---|
container_issue | |
container_start_page | 555 |
container_title | Fuel processing technology |
container_volume | 106 |
creator | Kozic, Mirko Ristic, Slavica Katavic, Boris Puharic, Mirjana |
description | This paper presents results of the impact plate surface modification of the ventilation mill in the Kostolac B power plant (Serbia). The modification is based on 3D numerical simulation of multiphase flow around a grinding wheel. High velocity of sand particles in the ventilation mill causes strong wear of the impact plates. The multiphase flow simulations of dilute gas–solid are performed in order to obtain the sand particle paths and velocity vectors for a different surface geometry of the mill impact plates. The mixture model of the Euler–Euler approach is used. The results obtained in the numerical simulation serve for the selection of an optimal redesign of the impact plates. The experimental tests of the revitalized mill wearing parts in real exploitation conditions show that the proposed modification, surfacing technologies and (coating) materials give good results. The relative weight loss of the base plate after 1440h period of exploitation in real conditions is 8%, while the weight loss for the hardfaced plate is 5.9% for the second filler. The application of this approach can reduce the number of possible repairs and extends the period between them, resulting in significant economic effects.
► CFD simulations of the multiphase flow in a thermo power plant mill are performed. ► The impact plate parts, exposed to wear, due to sand movement, are defined. ► Distribution and velocity vectors of gas mixture and sand particles are presented. ► Optimal surfacing technology and material are used to optimize the surface hardness. ► Modified plates tested in exploitation conditions have reduced wearing. |
doi_str_mv | 10.1016/j.fuproc.2012.09.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283663850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378382012003438</els_id><sourcerecordid>1283663850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-6f7628fa85f946a3e1babe828100d0e9649d27642f8c4fab84f1c61232284eb93</originalsourceid><addsrcrecordid>eNp9kU2L1TAUhoMoeB39B4LZCG5a89U03QgyfsKAoM46pOnJnVzSpCbtDPPvzaUXl66SE573TXiC0GtKWkqofH9q3bbkZFtGKGvJ0BLWP0EHqnre9FSpp-hAeK8arhh5jl6UciKEdN3QH9DjT5ig-GPEyWE_L8aueAlmhXI-uIe4-jr5FPHsQ8CjKTDhOvFPOG4zZG9NwMXP24Wqobpf_XJXSexCesAmpy1O2OBj9nHy8Ygf7gDCS_TMmVDg1WW9QrdfPv--_tbc_Pj6_frjTWMFH9ZGul4y5Yzq3CCk4UBHM4JiihIyERikGCbWS8GcssKZUQlHraSMM6YEjAO_Qu_23mrozwZl1bMvFkIwEdJWNGWKS8lVRyoqdtTmVEoGp5fsZ5MfNSX6bFqf9G5an01rMuhqusbeXm4wpepw2UTry78sk72gsqOVe7NzziRtqo2ib3_VIll_Q0rFz00fdgKqkHsPWRfrIVqYfAa76in5_z_lL58QoI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283663850</pqid></control><display><type>article</type><title>Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kozic, Mirko ; Ristic, Slavica ; Katavic, Boris ; Puharic, Mirjana</creator><creatorcontrib>Kozic, Mirko ; Ristic, Slavica ; Katavic, Boris ; Puharic, Mirjana</creatorcontrib><description>This paper presents results of the impact plate surface modification of the ventilation mill in the Kostolac B power plant (Serbia). The modification is based on 3D numerical simulation of multiphase flow around a grinding wheel. High velocity of sand particles in the ventilation mill causes strong wear of the impact plates. The multiphase flow simulations of dilute gas–solid are performed in order to obtain the sand particle paths and velocity vectors for a different surface geometry of the mill impact plates. The mixture model of the Euler–Euler approach is used. The results obtained in the numerical simulation serve for the selection of an optimal redesign of the impact plates. The experimental tests of the revitalized mill wearing parts in real exploitation conditions show that the proposed modification, surfacing technologies and (coating) materials give good results. The relative weight loss of the base plate after 1440h period of exploitation in real conditions is 8%, while the weight loss for the hardfaced plate is 5.9% for the second filler. The application of this approach can reduce the number of possible repairs and extends the period between them, resulting in significant economic effects.
► CFD simulations of the multiphase flow in a thermo power plant mill are performed. ► The impact plate parts, exposed to wear, due to sand movement, are defined. ► Distribution and velocity vectors of gas mixture and sand particles are presented. ► Optimal surfacing technology and material are used to optimize the surface hardness. ► Modified plates tested in exploitation conditions have reduced wearing.</description><identifier>ISSN: 0378-3820</identifier><identifier>EISSN: 1873-7188</identifier><identifier>DOI: 10.1016/j.fuproc.2012.09.027</identifier><identifier>CODEN: FPTEDY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; CFD ; coatings ; economic impact ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Flow simulation ; Fuels ; grinding ; mathematical models ; Multiphase flow ; Power plant ; power plants ; sand ; Surfacing technology ; Ventilation mill ; weight loss</subject><ispartof>Fuel processing technology, 2013-02, Vol.106, p.555-568</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-6f7628fa85f946a3e1babe828100d0e9649d27642f8c4fab84f1c61232284eb93</citedby><cites>FETCH-LOGICAL-c439t-6f7628fa85f946a3e1babe828100d0e9649d27642f8c4fab84f1c61232284eb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuproc.2012.09.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26741651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kozic, Mirko</creatorcontrib><creatorcontrib>Ristic, Slavica</creatorcontrib><creatorcontrib>Katavic, Boris</creatorcontrib><creatorcontrib>Puharic, Mirjana</creatorcontrib><title>Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel</title><title>Fuel processing technology</title><description>This paper presents results of the impact plate surface modification of the ventilation mill in the Kostolac B power plant (Serbia). The modification is based on 3D numerical simulation of multiphase flow around a grinding wheel. High velocity of sand particles in the ventilation mill causes strong wear of the impact plates. The multiphase flow simulations of dilute gas–solid are performed in order to obtain the sand particle paths and velocity vectors for a different surface geometry of the mill impact plates. The mixture model of the Euler–Euler approach is used. The results obtained in the numerical simulation serve for the selection of an optimal redesign of the impact plates. The experimental tests of the revitalized mill wearing parts in real exploitation conditions show that the proposed modification, surfacing technologies and (coating) materials give good results. The relative weight loss of the base plate after 1440h period of exploitation in real conditions is 8%, while the weight loss for the hardfaced plate is 5.9% for the second filler. The application of this approach can reduce the number of possible repairs and extends the period between them, resulting in significant economic effects.
► CFD simulations of the multiphase flow in a thermo power plant mill are performed. ► The impact plate parts, exposed to wear, due to sand movement, are defined. ► Distribution and velocity vectors of gas mixture and sand particles are presented. ► Optimal surfacing technology and material are used to optimize the surface hardness. ► Modified plates tested in exploitation conditions have reduced wearing.</description><subject>Applied sciences</subject><subject>CFD</subject><subject>coatings</subject><subject>economic impact</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Flow simulation</subject><subject>Fuels</subject><subject>grinding</subject><subject>mathematical models</subject><subject>Multiphase flow</subject><subject>Power plant</subject><subject>power plants</subject><subject>sand</subject><subject>Surfacing technology</subject><subject>Ventilation mill</subject><subject>weight loss</subject><issn>0378-3820</issn><issn>1873-7188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU2L1TAUhoMoeB39B4LZCG5a89U03QgyfsKAoM46pOnJnVzSpCbtDPPvzaUXl66SE573TXiC0GtKWkqofH9q3bbkZFtGKGvJ0BLWP0EHqnre9FSpp-hAeK8arhh5jl6UciKEdN3QH9DjT5ig-GPEyWE_L8aueAlmhXI-uIe4-jr5FPHsQ8CjKTDhOvFPOG4zZG9NwMXP24Wqobpf_XJXSexCesAmpy1O2OBj9nHy8Ygf7gDCS_TMmVDg1WW9QrdfPv--_tbc_Pj6_frjTWMFH9ZGul4y5Yzq3CCk4UBHM4JiihIyERikGCbWS8GcssKZUQlHraSMM6YEjAO_Qu_23mrozwZl1bMvFkIwEdJWNGWKS8lVRyoqdtTmVEoGp5fsZ5MfNSX6bFqf9G5an01rMuhqusbeXm4wpepw2UTry78sk72gsqOVe7NzziRtqo2ib3_VIll_Q0rFz00fdgKqkHsPWRfrIVqYfAa76in5_z_lL58QoI8</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Kozic, Mirko</creator><creator>Ristic, Slavica</creator><creator>Katavic, Boris</creator><creator>Puharic, Mirjana</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130201</creationdate><title>Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel</title><author>Kozic, Mirko ; Ristic, Slavica ; Katavic, Boris ; Puharic, Mirjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-6f7628fa85f946a3e1babe828100d0e9649d27642f8c4fab84f1c61232284eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>CFD</topic><topic>coatings</topic><topic>economic impact</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Flow simulation</topic><topic>Fuels</topic><topic>grinding</topic><topic>mathematical models</topic><topic>Multiphase flow</topic><topic>Power plant</topic><topic>power plants</topic><topic>sand</topic><topic>Surfacing technology</topic><topic>Ventilation mill</topic><topic>weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozic, Mirko</creatorcontrib><creatorcontrib>Ristic, Slavica</creatorcontrib><creatorcontrib>Katavic, Boris</creatorcontrib><creatorcontrib>Puharic, Mirjana</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Fuel processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozic, Mirko</au><au>Ristic, Slavica</au><au>Katavic, Boris</au><au>Puharic, Mirjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel</atitle><jtitle>Fuel processing technology</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>106</volume><spage>555</spage><epage>568</epage><pages>555-568</pages><issn>0378-3820</issn><eissn>1873-7188</eissn><coden>FPTEDY</coden><abstract>This paper presents results of the impact plate surface modification of the ventilation mill in the Kostolac B power plant (Serbia). The modification is based on 3D numerical simulation of multiphase flow around a grinding wheel. High velocity of sand particles in the ventilation mill causes strong wear of the impact plates. The multiphase flow simulations of dilute gas–solid are performed in order to obtain the sand particle paths and velocity vectors for a different surface geometry of the mill impact plates. The mixture model of the Euler–Euler approach is used. The results obtained in the numerical simulation serve for the selection of an optimal redesign of the impact plates. The experimental tests of the revitalized mill wearing parts in real exploitation conditions show that the proposed modification, surfacing technologies and (coating) materials give good results. The relative weight loss of the base plate after 1440h period of exploitation in real conditions is 8%, while the weight loss for the hardfaced plate is 5.9% for the second filler. The application of this approach can reduce the number of possible repairs and extends the period between them, resulting in significant economic effects.
► CFD simulations of the multiphase flow in a thermo power plant mill are performed. ► The impact plate parts, exposed to wear, due to sand movement, are defined. ► Distribution and velocity vectors of gas mixture and sand particles are presented. ► Optimal surfacing technology and material are used to optimize the surface hardness. ► Modified plates tested in exploitation conditions have reduced wearing.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fuproc.2012.09.027</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-3820 |
ispartof | Fuel processing technology, 2013-02, Vol.106, p.555-568 |
issn | 0378-3820 1873-7188 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283663850 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences CFD coatings economic impact Energy Energy. Thermal use of fuels Exact sciences and technology Flow simulation Fuels grinding mathematical models Multiphase flow Power plant power plants sand Surfacing technology Ventilation mill weight loss |
title | Redesign of impact plates of ventilation mill based on 3D numerical simulation of multiphase flow around a grinding wheel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redesign%20of%20impact%20plates%20of%20ventilation%20mill%20based%20on%203D%20numerical%20simulation%20of%20multiphase%20flow%20around%20a%20grinding%20wheel&rft.jtitle=Fuel%20processing%20technology&rft.au=Kozic,%20Mirko&rft.date=2013-02-01&rft.volume=106&rft.spage=555&rft.epage=568&rft.pages=555-568&rft.issn=0378-3820&rft.eissn=1873-7188&rft.coden=FPTEDY&rft_id=info:doi/10.1016/j.fuproc.2012.09.027&rft_dat=%3Cproquest_cross%3E1283663850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283663850&rft_id=info:pmid/&rft_els_id=S0378382012003438&rfr_iscdi=true |