Experimental and numerical study on slag deposition and growth at the slag tap hole region of Shell gasifier

Cold model experimental and dynamic modeling studies on the slag flow and heat transfer at the slag tap hole region of Shell gasifier have been carried out. The cold model experiment was set up to observe the simulated slag deposition. The dynamic model was proposed to clarify the slag accumulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel processing technology 2013-02, Vol.106, p.704-711
Hauptverfasser: Wang, Jian, Liu, Haifeng, Liang, Qinfeng, Xu, Jianliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 711
container_issue
container_start_page 704
container_title Fuel processing technology
container_volume 106
creator Wang, Jian
Liu, Haifeng
Liang, Qinfeng
Xu, Jianliang
description Cold model experimental and dynamic modeling studies on the slag flow and heat transfer at the slag tap hole region of Shell gasifier have been carried out. The cold model experiment was set up to observe the simulated slag deposition. The dynamic model was proposed to clarify the slag accumulation on the wall of slag screen. The results show that the simulated slag can be broken up to slender liquid filaments by the high-speed swirling gas flow, and a part of the filaments can deposit on the slag screen wall. When the surface temperature is below the critical temperature, the slag is totally solidified to solid slag layer. At equilibrium, a liquid slag layer covers the solid slag layer and its surface temperature is higher than the critical temperature. The solid slag layer thickness increases along the slag flow. In addition, the solid slag thickness can be decreased by increasing the operating load and operating temperature. ► A part of the simulated slag can deposit on the slag screen wall. ► The solid slag layer thickness increases along the slag flow. ► As the operating load is increased, the solid slag thickness decreases. ► The solid slag thickness decreases with increasing operating temperature.
doi_str_mv 10.1016/j.fuproc.2012.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283663541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378382012003943</els_id><sourcerecordid>1283663541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-9addf03ac3e9dcbbea843823417bace5d0444f2dd59eb63dea23b63737659c713</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVooNuk_6AQXQq9eCtZsmRfCiWkHxDoIc1ZaKWxV4vXciW5Tf59xzj02NMwwzOjl0eEvONszxlXH0_7fplTdPua8RpHe8aaC7LjrRaV5m37iuyY0G0l2pq9Jm9yPjEkmk7vyHj3NEMKZ5iKHamdPJ2WMw4cdrks_pnGiebRDtTDHHMoAfsVG1L8U47UFlqOsBHFzvQYR6AJhhWLPX04wjjSwebQB0jX5LK3Y4a3L_WKPH65-3n7rbr_8fX77ef7yknRlaqz3vdMWCeg8-5wANtKjC4k1wfroPFMStnX3jcdHJTwYGuBVQutms5pLq7Ih-0uSvm1QC7mHLLDJHaCuGTD61YoJRq5onJDXYo5J-jNjDZsejacmVWuOZlNrlnlrlNUh2vvX16wGVX1yU4u5H-7tdKSK9Uhd7NxvY3GDgmZxwc8pPADlGqblfi0EYBCfqMkk12AyYEPCVwxPob_R_kLXfCclA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283663541</pqid></control><display><type>article</type><title>Experimental and numerical study on slag deposition and growth at the slag tap hole region of Shell gasifier</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Jian ; Liu, Haifeng ; Liang, Qinfeng ; Xu, Jianliang</creator><creatorcontrib>Wang, Jian ; Liu, Haifeng ; Liang, Qinfeng ; Xu, Jianliang</creatorcontrib><description>Cold model experimental and dynamic modeling studies on the slag flow and heat transfer at the slag tap hole region of Shell gasifier have been carried out. The cold model experiment was set up to observe the simulated slag deposition. The dynamic model was proposed to clarify the slag accumulation on the wall of slag screen. The results show that the simulated slag can be broken up to slender liquid filaments by the high-speed swirling gas flow, and a part of the filaments can deposit on the slag screen wall. When the surface temperature is below the critical temperature, the slag is totally solidified to solid slag layer. At equilibrium, a liquid slag layer covers the solid slag layer and its surface temperature is higher than the critical temperature. The solid slag layer thickness increases along the slag flow. In addition, the solid slag thickness can be decreased by increasing the operating load and operating temperature. ► A part of the simulated slag can deposit on the slag screen wall. ► The solid slag layer thickness increases along the slag flow. ► As the operating load is increased, the solid slag thickness decreases. ► The solid slag thickness decreases with increasing operating temperature.</description><identifier>ISSN: 0378-3820</identifier><identifier>EISSN: 1873-7188</identifier><identifier>DOI: 10.1016/j.fuproc.2012.10.005</identifier><identifier>CODEN: FPTEDY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Coal ; cold ; dynamic models ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fuels ; Gasifier ; Heat transfer ; mathematical models ; Slag ; slags ; surface temperature ; Theoretical studies. Data and constants. Metering</subject><ispartof>Fuel processing technology, 2013-02, Vol.106, p.704-711</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-9addf03ac3e9dcbbea843823417bace5d0444f2dd59eb63dea23b63737659c713</citedby><cites>FETCH-LOGICAL-c439t-9addf03ac3e9dcbbea843823417bace5d0444f2dd59eb63dea23b63737659c713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuproc.2012.10.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26741669$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Liu, Haifeng</creatorcontrib><creatorcontrib>Liang, Qinfeng</creatorcontrib><creatorcontrib>Xu, Jianliang</creatorcontrib><title>Experimental and numerical study on slag deposition and growth at the slag tap hole region of Shell gasifier</title><title>Fuel processing technology</title><description>Cold model experimental and dynamic modeling studies on the slag flow and heat transfer at the slag tap hole region of Shell gasifier have been carried out. The cold model experiment was set up to observe the simulated slag deposition. The dynamic model was proposed to clarify the slag accumulation on the wall of slag screen. The results show that the simulated slag can be broken up to slender liquid filaments by the high-speed swirling gas flow, and a part of the filaments can deposit on the slag screen wall. When the surface temperature is below the critical temperature, the slag is totally solidified to solid slag layer. At equilibrium, a liquid slag layer covers the solid slag layer and its surface temperature is higher than the critical temperature. The solid slag layer thickness increases along the slag flow. In addition, the solid slag thickness can be decreased by increasing the operating load and operating temperature. ► A part of the simulated slag can deposit on the slag screen wall. ► The solid slag layer thickness increases along the slag flow. ► As the operating load is increased, the solid slag thickness decreases. ► The solid slag thickness decreases with increasing operating temperature.</description><subject>Applied sciences</subject><subject>Coal</subject><subject>cold</subject><subject>dynamic models</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Gasifier</subject><subject>Heat transfer</subject><subject>mathematical models</subject><subject>Slag</subject><subject>slags</subject><subject>surface temperature</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0378-3820</issn><issn>1873-7188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVooNuk_6AQXQq9eCtZsmRfCiWkHxDoIc1ZaKWxV4vXciW5Tf59xzj02NMwwzOjl0eEvONszxlXH0_7fplTdPua8RpHe8aaC7LjrRaV5m37iuyY0G0l2pq9Jm9yPjEkmk7vyHj3NEMKZ5iKHamdPJ2WMw4cdrks_pnGiebRDtTDHHMoAfsVG1L8U47UFlqOsBHFzvQYR6AJhhWLPX04wjjSwebQB0jX5LK3Y4a3L_WKPH65-3n7rbr_8fX77ef7yknRlaqz3vdMWCeg8-5wANtKjC4k1wfroPFMStnX3jcdHJTwYGuBVQutms5pLq7Ih-0uSvm1QC7mHLLDJHaCuGTD61YoJRq5onJDXYo5J-jNjDZsejacmVWuOZlNrlnlrlNUh2vvX16wGVX1yU4u5H-7tdKSK9Uhd7NxvY3GDgmZxwc8pPADlGqblfi0EYBCfqMkk12AyYEPCVwxPob_R_kLXfCclA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Wang, Jian</creator><creator>Liu, Haifeng</creator><creator>Liang, Qinfeng</creator><creator>Xu, Jianliang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130201</creationdate><title>Experimental and numerical study on slag deposition and growth at the slag tap hole region of Shell gasifier</title><author>Wang, Jian ; Liu, Haifeng ; Liang, Qinfeng ; Xu, Jianliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-9addf03ac3e9dcbbea843823417bace5d0444f2dd59eb63dea23b63737659c713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Coal</topic><topic>cold</topic><topic>dynamic models</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Gasifier</topic><topic>Heat transfer</topic><topic>mathematical models</topic><topic>Slag</topic><topic>slags</topic><topic>surface temperature</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Liu, Haifeng</creatorcontrib><creatorcontrib>Liang, Qinfeng</creatorcontrib><creatorcontrib>Xu, Jianliang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Fuel processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian</au><au>Liu, Haifeng</au><au>Liang, Qinfeng</au><au>Xu, Jianliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical study on slag deposition and growth at the slag tap hole region of Shell gasifier</atitle><jtitle>Fuel processing technology</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>106</volume><spage>704</spage><epage>711</epage><pages>704-711</pages><issn>0378-3820</issn><eissn>1873-7188</eissn><coden>FPTEDY</coden><abstract>Cold model experimental and dynamic modeling studies on the slag flow and heat transfer at the slag tap hole region of Shell gasifier have been carried out. The cold model experiment was set up to observe the simulated slag deposition. The dynamic model was proposed to clarify the slag accumulation on the wall of slag screen. The results show that the simulated slag can be broken up to slender liquid filaments by the high-speed swirling gas flow, and a part of the filaments can deposit on the slag screen wall. When the surface temperature is below the critical temperature, the slag is totally solidified to solid slag layer. At equilibrium, a liquid slag layer covers the solid slag layer and its surface temperature is higher than the critical temperature. The solid slag layer thickness increases along the slag flow. In addition, the solid slag thickness can be decreased by increasing the operating load and operating temperature. ► A part of the simulated slag can deposit on the slag screen wall. ► The solid slag layer thickness increases along the slag flow. ► As the operating load is increased, the solid slag thickness decreases. ► The solid slag thickness decreases with increasing operating temperature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fuproc.2012.10.005</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-3820
ispartof Fuel processing technology, 2013-02, Vol.106, p.704-711
issn 0378-3820
1873-7188
language eng
recordid cdi_proquest_miscellaneous_1283663541
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Coal
cold
dynamic models
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fuels
Gasifier
Heat transfer
mathematical models
Slag
slags
surface temperature
Theoretical studies. Data and constants. Metering
title Experimental and numerical study on slag deposition and growth at the slag tap hole region of Shell gasifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20study%20on%20slag%20deposition%20and%20growth%20at%20the%20slag%20tap%20hole%20region%20of%20Shell%20gasifier&rft.jtitle=Fuel%20processing%20technology&rft.au=Wang,%20Jian&rft.date=2013-02-01&rft.volume=106&rft.spage=704&rft.epage=711&rft.pages=704-711&rft.issn=0378-3820&rft.eissn=1873-7188&rft.coden=FPTEDY&rft_id=info:doi/10.1016/j.fuproc.2012.10.005&rft_dat=%3Cproquest_cross%3E1283663541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283663541&rft_id=info:pmid/&rft_els_id=S0378382012003943&rfr_iscdi=true