Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection

[Display omitted] ► High-quality CA-CdTe QDs were synthesized with a kinetic-growth strategy. ► The synthesis procedures were very simple. ► The obtained QDs were used to detect Hg2+ without the interference of Cu2+. High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2012-12, Vol.757, p.63-68
Hauptverfasser: Pei, Jiying, Zhu, Hui, Wang, Xiaolei, Zhang, Hanchang, Yang, Xiurong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue
container_start_page 63
container_title Analytica chimica acta
container_volume 757
creator Pei, Jiying
Zhu, Hui
Wang, Xiaolei
Zhang, Hanchang
Yang, Xiurong
description [Display omitted] ► High-quality CA-CdTe QDs were synthesized with a kinetic-growth strategy. ► The synthesis procedures were very simple. ► The obtained QDs were used to detect Hg2+ without the interference of Cu2+. High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33μM with a limit of detection (LOD) of 0.07μM.
doi_str_mv 10.1016/j.aca.2012.10.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283662754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267012015590</els_id><sourcerecordid>1283662754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-f32bce2155603a9945ce6f61c4cc75ab0f1829a9cf0b9962210a09ea6d3c81d43</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun78AC-Sox665qNNWzzJ4sfCggf1ashOpphl265JKuy_N2XVoziXYTLPvJD3JeScsylnXF2vpgbMVDAu0jxlstwjE16VMsulyPfJhDEmM6FKdkSOQ1ilUXCWH5IjIQVTsi4n5O1528V3DC7QvqGwDRFN6zrMoDcRLZ3ZF6Qfg-ni0FLbx0BNZ6kb-2azdmCi6zvqOtqih8Fv6eV8fkUtRoRxc0oOGrMOePbdT8jr_d3L7DFbPD3MZ7eLDGSlYtZIsQQUvCgUk6au8wJQNYpDDlAWZskaXona1NCwZV0rkb5hWI1GWQkVt7k8IZc73Y3vPwYMUbcuAK7XpsN-CJqLSiolyuI_aCopVTmifIeC70Pw2OiNd63xW82ZHhPQK50S0GMC41NKIN1cfMsPyxbt78WP5Qm42QGY_Ph06HUAhx2gdT6Zpm3v_pD_AoCOlWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1222233674</pqid></control><display><type>article</type><title>Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pei, Jiying ; Zhu, Hui ; Wang, Xiaolei ; Zhang, Hanchang ; Yang, Xiurong</creator><creatorcontrib>Pei, Jiying ; Zhu, Hui ; Wang, Xiaolei ; Zhang, Hanchang ; Yang, Xiurong</creatorcontrib><description>[Display omitted] ► High-quality CA-CdTe QDs were synthesized with a kinetic-growth strategy. ► The synthesis procedures were very simple. ► The obtained QDs were used to detect Hg2+ without the interference of Cu2+. High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33μM with a limit of detection (LOD) of 0.07μM.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2012.10.037</identifier><identifier>PMID: 23206397</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Absorption spectra ; Cadmium Compounds - chemistry ; Cadmium tellurides ; CdTe quantum dots ; Copper - analysis ; Cyanides ; Cysteamine ; Cysteamine - chemistry ; Fluorescence ; Fluorescence quenching ; Ions - chemistry ; Mercury ; Mercury (II) ; Mercury - analysis ; Morphology ; Photoluminescence ; Quantum Dots ; Raw materials ; Spectrophotometry, Ultraviolet ; Tellurium - chemistry</subject><ispartof>Analytica chimica acta, 2012-12, Vol.757, p.63-68</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-f32bce2155603a9945ce6f61c4cc75ab0f1829a9cf0b9962210a09ea6d3c81d43</citedby><cites>FETCH-LOGICAL-c386t-f32bce2155603a9945ce6f61c4cc75ab0f1829a9cf0b9962210a09ea6d3c81d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003267012015590$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23206397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pei, Jiying</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Zhang, Hanchang</creatorcontrib><creatorcontrib>Yang, Xiurong</creatorcontrib><title>Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>[Display omitted] ► High-quality CA-CdTe QDs were synthesized with a kinetic-growth strategy. ► The synthesis procedures were very simple. ► The obtained QDs were used to detect Hg2+ without the interference of Cu2+. High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33μM with a limit of detection (LOD) of 0.07μM.</description><subject>Absorption spectra</subject><subject>Cadmium Compounds - chemistry</subject><subject>Cadmium tellurides</subject><subject>CdTe quantum dots</subject><subject>Copper - analysis</subject><subject>Cyanides</subject><subject>Cysteamine</subject><subject>Cysteamine - chemistry</subject><subject>Fluorescence</subject><subject>Fluorescence quenching</subject><subject>Ions - chemistry</subject><subject>Mercury</subject><subject>Mercury (II)</subject><subject>Mercury - analysis</subject><subject>Morphology</subject><subject>Photoluminescence</subject><subject>Quantum Dots</subject><subject>Raw materials</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Tellurium - chemistry</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMoun78AC-Sox665qNNWzzJ4sfCggf1ashOpphl265JKuy_N2XVoziXYTLPvJD3JeScsylnXF2vpgbMVDAu0jxlstwjE16VMsulyPfJhDEmM6FKdkSOQ1ilUXCWH5IjIQVTsi4n5O1528V3DC7QvqGwDRFN6zrMoDcRLZ3ZF6Qfg-ni0FLbx0BNZ6kb-2azdmCi6zvqOtqih8Fv6eV8fkUtRoRxc0oOGrMOePbdT8jr_d3L7DFbPD3MZ7eLDGSlYtZIsQQUvCgUk6au8wJQNYpDDlAWZskaXona1NCwZV0rkb5hWI1GWQkVt7k8IZc73Y3vPwYMUbcuAK7XpsN-CJqLSiolyuI_aCopVTmifIeC70Pw2OiNd63xW82ZHhPQK50S0GMC41NKIN1cfMsPyxbt78WP5Qm42QGY_Ph06HUAhx2gdT6Zpm3v_pD_AoCOlWE</recordid><startdate>20121213</startdate><enddate>20121213</enddate><creator>Pei, Jiying</creator><creator>Zhu, Hui</creator><creator>Wang, Xiaolei</creator><creator>Zhang, Hanchang</creator><creator>Yang, Xiurong</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121213</creationdate><title>Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection</title><author>Pei, Jiying ; Zhu, Hui ; Wang, Xiaolei ; Zhang, Hanchang ; Yang, Xiurong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-f32bce2155603a9945ce6f61c4cc75ab0f1829a9cf0b9962210a09ea6d3c81d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Absorption spectra</topic><topic>Cadmium Compounds - chemistry</topic><topic>Cadmium tellurides</topic><topic>CdTe quantum dots</topic><topic>Copper - analysis</topic><topic>Cyanides</topic><topic>Cysteamine</topic><topic>Cysteamine - chemistry</topic><topic>Fluorescence</topic><topic>Fluorescence quenching</topic><topic>Ions - chemistry</topic><topic>Mercury</topic><topic>Mercury (II)</topic><topic>Mercury - analysis</topic><topic>Morphology</topic><topic>Photoluminescence</topic><topic>Quantum Dots</topic><topic>Raw materials</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Tellurium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Jiying</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Zhang, Hanchang</creatorcontrib><creatorcontrib>Yang, Xiurong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Jiying</au><au>Zhu, Hui</au><au>Wang, Xiaolei</au><au>Zhang, Hanchang</au><au>Yang, Xiurong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2012-12-13</date><risdate>2012</risdate><volume>757</volume><spage>63</spage><epage>68</epage><pages>63-68</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>[Display omitted] ► High-quality CA-CdTe QDs were synthesized with a kinetic-growth strategy. ► The synthesis procedures were very simple. ► The obtained QDs were used to detect Hg2+ without the interference of Cu2+. High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33μM with a limit of detection (LOD) of 0.07μM.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23206397</pmid><doi>10.1016/j.aca.2012.10.037</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2012-12, Vol.757, p.63-68
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_1283662754
source MEDLINE; Elsevier ScienceDirect Journals
subjects Absorption spectra
Cadmium Compounds - chemistry
Cadmium tellurides
CdTe quantum dots
Copper - analysis
Cyanides
Cysteamine
Cysteamine - chemistry
Fluorescence
Fluorescence quenching
Ions - chemistry
Mercury
Mercury (II)
Mercury - analysis
Morphology
Photoluminescence
Quantum Dots
Raw materials
Spectrophotometry, Ultraviolet
Tellurium - chemistry
title Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20cysteamine-coated%20CdTe%20quantum%20dots%20and%20its%20application%20in%20mercury%20(II)%20detection&rft.jtitle=Analytica%20chimica%20acta&rft.au=Pei,%20Jiying&rft.date=2012-12-13&rft.volume=757&rft.spage=63&rft.epage=68&rft.pages=63-68&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2012.10.037&rft_dat=%3Cproquest_cross%3E1283662754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1222233674&rft_id=info:pmid/23206397&rft_els_id=S0003267012015590&rfr_iscdi=true