Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection
[Display omitted] ► High-quality CA-CdTe QDs were synthesized with a kinetic-growth strategy. ► The synthesis procedures were very simple. ► The obtained QDs were used to detect Hg2+ without the interference of Cu2+. High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully sy...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2012-12, Vol.757, p.63-68 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | |
container_start_page | 63 |
container_title | Analytica chimica acta |
container_volume | 757 |
creator | Pei, Jiying Zhu, Hui Wang, Xiaolei Zhang, Hanchang Yang, Xiurong |
description | [Display omitted]
► High-quality CA-CdTe QDs were synthesized with a kinetic-growth strategy. ► The synthesis procedures were very simple. ► The obtained QDs were used to detect Hg2+ without the interference of Cu2+.
High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33μM with a limit of detection (LOD) of 0.07μM. |
doi_str_mv | 10.1016/j.aca.2012.10.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283662754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267012015590</els_id><sourcerecordid>1283662754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-f32bce2155603a9945ce6f61c4cc75ab0f1829a9cf0b9962210a09ea6d3c81d43</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun78AC-Sox665qNNWzzJ4sfCggf1ashOpphl265JKuy_N2XVoziXYTLPvJD3JeScsylnXF2vpgbMVDAu0jxlstwjE16VMsulyPfJhDEmM6FKdkSOQ1ilUXCWH5IjIQVTsi4n5O1528V3DC7QvqGwDRFN6zrMoDcRLZ3ZF6Qfg-ni0FLbx0BNZ6kb-2azdmCi6zvqOtqih8Fv6eV8fkUtRoRxc0oOGrMOePbdT8jr_d3L7DFbPD3MZ7eLDGSlYtZIsQQUvCgUk6au8wJQNYpDDlAWZskaXona1NCwZV0rkb5hWI1GWQkVt7k8IZc73Y3vPwYMUbcuAK7XpsN-CJqLSiolyuI_aCopVTmifIeC70Pw2OiNd63xW82ZHhPQK50S0GMC41NKIN1cfMsPyxbt78WP5Qm42QGY_Ph06HUAhx2gdT6Zpm3v_pD_AoCOlWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1222233674</pqid></control><display><type>article</type><title>Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pei, Jiying ; Zhu, Hui ; Wang, Xiaolei ; Zhang, Hanchang ; Yang, Xiurong</creator><creatorcontrib>Pei, Jiying ; Zhu, Hui ; Wang, Xiaolei ; Zhang, Hanchang ; Yang, Xiurong</creatorcontrib><description>[Display omitted]
► High-quality CA-CdTe QDs were synthesized with a kinetic-growth strategy. ► The synthesis procedures were very simple. ► The obtained QDs were used to detect Hg2+ without the interference of Cu2+.
High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33μM with a limit of detection (LOD) of 0.07μM.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2012.10.037</identifier><identifier>PMID: 23206397</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Absorption spectra ; Cadmium Compounds - chemistry ; Cadmium tellurides ; CdTe quantum dots ; Copper - analysis ; Cyanides ; Cysteamine ; Cysteamine - chemistry ; Fluorescence ; Fluorescence quenching ; Ions - chemistry ; Mercury ; Mercury (II) ; Mercury - analysis ; Morphology ; Photoluminescence ; Quantum Dots ; Raw materials ; Spectrophotometry, Ultraviolet ; Tellurium - chemistry</subject><ispartof>Analytica chimica acta, 2012-12, Vol.757, p.63-68</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-f32bce2155603a9945ce6f61c4cc75ab0f1829a9cf0b9962210a09ea6d3c81d43</citedby><cites>FETCH-LOGICAL-c386t-f32bce2155603a9945ce6f61c4cc75ab0f1829a9cf0b9962210a09ea6d3c81d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003267012015590$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23206397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pei, Jiying</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Zhang, Hanchang</creatorcontrib><creatorcontrib>Yang, Xiurong</creatorcontrib><title>Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>[Display omitted]
► High-quality CA-CdTe QDs were synthesized with a kinetic-growth strategy. ► The synthesis procedures were very simple. ► The obtained QDs were used to detect Hg2+ without the interference of Cu2+.
High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33μM with a limit of detection (LOD) of 0.07μM.</description><subject>Absorption spectra</subject><subject>Cadmium Compounds - chemistry</subject><subject>Cadmium tellurides</subject><subject>CdTe quantum dots</subject><subject>Copper - analysis</subject><subject>Cyanides</subject><subject>Cysteamine</subject><subject>Cysteamine - chemistry</subject><subject>Fluorescence</subject><subject>Fluorescence quenching</subject><subject>Ions - chemistry</subject><subject>Mercury</subject><subject>Mercury (II)</subject><subject>Mercury - analysis</subject><subject>Morphology</subject><subject>Photoluminescence</subject><subject>Quantum Dots</subject><subject>Raw materials</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Tellurium - chemistry</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMoun78AC-Sox665qNNWzzJ4sfCggf1ashOpphl265JKuy_N2XVoziXYTLPvJD3JeScsylnXF2vpgbMVDAu0jxlstwjE16VMsulyPfJhDEmM6FKdkSOQ1ilUXCWH5IjIQVTsi4n5O1528V3DC7QvqGwDRFN6zrMoDcRLZ3ZF6Qfg-ni0FLbx0BNZ6kb-2azdmCi6zvqOtqih8Fv6eV8fkUtRoRxc0oOGrMOePbdT8jr_d3L7DFbPD3MZ7eLDGSlYtZIsQQUvCgUk6au8wJQNYpDDlAWZskaXona1NCwZV0rkb5hWI1GWQkVt7k8IZc73Y3vPwYMUbcuAK7XpsN-CJqLSiolyuI_aCopVTmifIeC70Pw2OiNd63xW82ZHhPQK50S0GMC41NKIN1cfMsPyxbt78WP5Qm42QGY_Ph06HUAhx2gdT6Zpm3v_pD_AoCOlWE</recordid><startdate>20121213</startdate><enddate>20121213</enddate><creator>Pei, Jiying</creator><creator>Zhu, Hui</creator><creator>Wang, Xiaolei</creator><creator>Zhang, Hanchang</creator><creator>Yang, Xiurong</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121213</creationdate><title>Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection</title><author>Pei, Jiying ; Zhu, Hui ; Wang, Xiaolei ; Zhang, Hanchang ; Yang, Xiurong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-f32bce2155603a9945ce6f61c4cc75ab0f1829a9cf0b9962210a09ea6d3c81d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Absorption spectra</topic><topic>Cadmium Compounds - chemistry</topic><topic>Cadmium tellurides</topic><topic>CdTe quantum dots</topic><topic>Copper - analysis</topic><topic>Cyanides</topic><topic>Cysteamine</topic><topic>Cysteamine - chemistry</topic><topic>Fluorescence</topic><topic>Fluorescence quenching</topic><topic>Ions - chemistry</topic><topic>Mercury</topic><topic>Mercury (II)</topic><topic>Mercury - analysis</topic><topic>Morphology</topic><topic>Photoluminescence</topic><topic>Quantum Dots</topic><topic>Raw materials</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Tellurium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Jiying</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Zhang, Hanchang</creatorcontrib><creatorcontrib>Yang, Xiurong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Jiying</au><au>Zhu, Hui</au><au>Wang, Xiaolei</au><au>Zhang, Hanchang</au><au>Yang, Xiurong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2012-12-13</date><risdate>2012</risdate><volume>757</volume><spage>63</spage><epage>68</epage><pages>63-68</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>[Display omitted]
► High-quality CA-CdTe QDs were synthesized with a kinetic-growth strategy. ► The synthesis procedures were very simple. ► The obtained QDs were used to detect Hg2+ without the interference of Cu2+.
High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33μM with a limit of detection (LOD) of 0.07μM.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23206397</pmid><doi>10.1016/j.aca.2012.10.037</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2670 |
ispartof | Analytica chimica acta, 2012-12, Vol.757, p.63-68 |
issn | 0003-2670 1873-4324 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283662754 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Absorption spectra Cadmium Compounds - chemistry Cadmium tellurides CdTe quantum dots Copper - analysis Cyanides Cysteamine Cysteamine - chemistry Fluorescence Fluorescence quenching Ions - chemistry Mercury Mercury (II) Mercury - analysis Morphology Photoluminescence Quantum Dots Raw materials Spectrophotometry, Ultraviolet Tellurium - chemistry |
title | Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20cysteamine-coated%20CdTe%20quantum%20dots%20and%20its%20application%20in%20mercury%20(II)%20detection&rft.jtitle=Analytica%20chimica%20acta&rft.au=Pei,%20Jiying&rft.date=2012-12-13&rft.volume=757&rft.spage=63&rft.epage=68&rft.pages=63-68&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2012.10.037&rft_dat=%3Cproquest_cross%3E1283662754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1222233674&rft_id=info:pmid/23206397&rft_els_id=S0003267012015590&rfr_iscdi=true |