Stratified sampling for feature subspace selection in random forests for high dimensional data

For high dimensional data a large portion of features are often not informative of the class of the objects. Random forest algorithms tend to use a simple random sampling of features in building their decision trees and consequently select many subspaces that contain few, if any, informative feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2013-03, Vol.46 (3), p.769-787
Hauptverfasser: Ye, Yunming, Wu, Qingyao, Zhexue Huang, Joshua, Ng, Michael K., Li, Xutao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!