Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties
Free-standing and supported nanomembranes have been prepared by spin-coating mixtures of a semiconducting polythiophene (P3TMA) derivative and thermoplastic polyurethane (TPU). Thermal studies of TPU:P3TMA blends with 60 : 40, 50 : 50, 40 : 60 and 20 : 80 weight ratios indicate a partial miscibility...
Gespeichert in:
Veröffentlicht in: | Polymer chemistry 2013-01, Vol.4 (3), p.568-583 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 583 |
---|---|
container_issue | 3 |
container_start_page | 568 |
container_title | Polymer chemistry |
container_volume | 4 |
creator | Pérez Madrigal, Maria M. Giannotti, Marina I. Oncins, Gerard Franco, Lourdes Armelin, Elaine Puiggalí, Jordi Sanz, Fausto del Valle, Luis J. Alemán, Carlos |
description | Free-standing and supported nanomembranes have been prepared by spin-coating mixtures of a semiconducting polythiophene (P3TMA) derivative and thermoplastic polyurethane (TPU). Thermal studies of TPU:P3TMA blends with 60 : 40, 50 : 50, 40 : 60 and 20 : 80 weight ratios indicate a partial miscibility of the two components. Analysis of the glass transition temperatures allowed us to identify the highest miscibility for the blend with a 40 : 60 weight ratio, this composition being used to prepare both self-standing and supported nanomembranes. The thickness of ultra-thin films made with the 40 : 60 blend ranged from 11 to 93 nm, while the average roughness was 16.3 plus or minus 0.8 nm. In these films the P3TMA-rich phase forms granules, which are dispersed throughout the rest of the film. Quantitative nanomechanical mapping has been used to determine the Young's modulus value by applying the Derjanguin-Mueller-Toporov (DMT) contact mechanics model and the adhesion force of ultra-thin films. The modulus depends on the thickness of the films, values determined for the thicker (80-140 nm)/thinner (10-40 nm) regions of TPU, P3TMA and blend samples being 25/35 MPa, 3.5/12 GPa and 0.9/1.7 GPa, respectively. In contrast the adhesion force is homogeneous through the whole surface of the TPU and P3TMA films (average values: 7.2 and 5.0 nN, respectively), whereas for the blend it depends on the phase distribution. Thus, the adhesion force is higher for the TPU-rich domains than for the P3TMA-rich domains. Finally, the utility of the nanomembranes for tissue engineering applications has been proved by cellular proliferation assays. Results show that the blend is more active as a cellular matrix than each of the two individual polymers. |
doi_str_mv | 10.1039/C2PY20654D |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283660250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283660250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-5ffb0dd761493b35651182a315a61b60e02f559e774f4656492ba2cf9846689f3</originalsourceid><addsrcrecordid>eNpFUEtLxDAQDqLgsu7FX9CjiNW823jT9QkLetCDp5KmCY20TU1SYf-DP9q4FZ3LDPO9hgHgGMFzBIm4WOPnNww5ozd7YIEKJnIhON7_mxk9BKsQ3mEqgigmfAG-rq2TKtpPnQ1ycL3uay8HHTJnsqB7q9zQTCo6n42u28bWurHVg87k0GSx1b53YydDtGqHT17HNskvZ0x2ZzvXEH3ymLzsdro5SCWiVWk1ejdqH60OR-DAyC7o1W9fgte725f1Q755un9cX21yhTmNOTOmhk1TcEQFqQnjDKESS4KY5KjmUENsGBO6KKihnHEqcC2xMqKknJfCkCU4mX1T9MekQ6x6G5TuunS6m0KFcEk4h5jBRD2dqcq7ELw21ehtL_22QrD6-Xr1_3XyDTH-eEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283660250</pqid></control><display><type>article</type><title>Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Pérez Madrigal, Maria M. ; Giannotti, Marina I. ; Oncins, Gerard ; Franco, Lourdes ; Armelin, Elaine ; Puiggalí, Jordi ; Sanz, Fausto ; del Valle, Luis J. ; Alemán, Carlos</creator><creatorcontrib>Pérez Madrigal, Maria M. ; Giannotti, Marina I. ; Oncins, Gerard ; Franco, Lourdes ; Armelin, Elaine ; Puiggalí, Jordi ; Sanz, Fausto ; del Valle, Luis J. ; Alemán, Carlos</creatorcontrib><description>Free-standing and supported nanomembranes have been prepared by spin-coating mixtures of a semiconducting polythiophene (P3TMA) derivative and thermoplastic polyurethane (TPU). Thermal studies of TPU:P3TMA blends with 60 : 40, 50 : 50, 40 : 60 and 20 : 80 weight ratios indicate a partial miscibility of the two components. Analysis of the glass transition temperatures allowed us to identify the highest miscibility for the blend with a 40 : 60 weight ratio, this composition being used to prepare both self-standing and supported nanomembranes. The thickness of ultra-thin films made with the 40 : 60 blend ranged from 11 to 93 nm, while the average roughness was 16.3 plus or minus 0.8 nm. In these films the P3TMA-rich phase forms granules, which are dispersed throughout the rest of the film. Quantitative nanomechanical mapping has been used to determine the Young's modulus value by applying the Derjanguin-Mueller-Toporov (DMT) contact mechanics model and the adhesion force of ultra-thin films. The modulus depends on the thickness of the films, values determined for the thicker (80-140 nm)/thinner (10-40 nm) regions of TPU, P3TMA and blend samples being 25/35 MPa, 3.5/12 GPa and 0.9/1.7 GPa, respectively. In contrast the adhesion force is homogeneous through the whole surface of the TPU and P3TMA films (average values: 7.2 and 5.0 nN, respectively), whereas for the blend it depends on the phase distribution. Thus, the adhesion force is higher for the TPU-rich domains than for the P3TMA-rich domains. Finally, the utility of the nanomembranes for tissue engineering applications has been proved by cellular proliferation assays. Results show that the blend is more active as a cellular matrix than each of the two individual polymers.</description><identifier>ISSN: 1759-9954</identifier><identifier>EISSN: 1759-9962</identifier><identifier>DOI: 10.1039/C2PY20654D</identifier><language>eng</language><subject>Adhesion ; Blends ; Nanocomposites ; Nanomaterials ; Nanostructure ; Polymer blends ; Semiconductors ; Urethane thermoplastic elastomers</subject><ispartof>Polymer chemistry, 2013-01, Vol.4 (3), p.568-583</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-5ffb0dd761493b35651182a315a61b60e02f559e774f4656492ba2cf9846689f3</citedby><cites>FETCH-LOGICAL-c264t-5ffb0dd761493b35651182a315a61b60e02f559e774f4656492ba2cf9846689f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Pérez Madrigal, Maria M.</creatorcontrib><creatorcontrib>Giannotti, Marina I.</creatorcontrib><creatorcontrib>Oncins, Gerard</creatorcontrib><creatorcontrib>Franco, Lourdes</creatorcontrib><creatorcontrib>Armelin, Elaine</creatorcontrib><creatorcontrib>Puiggalí, Jordi</creatorcontrib><creatorcontrib>Sanz, Fausto</creatorcontrib><creatorcontrib>del Valle, Luis J.</creatorcontrib><creatorcontrib>Alemán, Carlos</creatorcontrib><title>Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties</title><title>Polymer chemistry</title><description>Free-standing and supported nanomembranes have been prepared by spin-coating mixtures of a semiconducting polythiophene (P3TMA) derivative and thermoplastic polyurethane (TPU). Thermal studies of TPU:P3TMA blends with 60 : 40, 50 : 50, 40 : 60 and 20 : 80 weight ratios indicate a partial miscibility of the two components. Analysis of the glass transition temperatures allowed us to identify the highest miscibility for the blend with a 40 : 60 weight ratio, this composition being used to prepare both self-standing and supported nanomembranes. The thickness of ultra-thin films made with the 40 : 60 blend ranged from 11 to 93 nm, while the average roughness was 16.3 plus or minus 0.8 nm. In these films the P3TMA-rich phase forms granules, which are dispersed throughout the rest of the film. Quantitative nanomechanical mapping has been used to determine the Young's modulus value by applying the Derjanguin-Mueller-Toporov (DMT) contact mechanics model and the adhesion force of ultra-thin films. The modulus depends on the thickness of the films, values determined for the thicker (80-140 nm)/thinner (10-40 nm) regions of TPU, P3TMA and blend samples being 25/35 MPa, 3.5/12 GPa and 0.9/1.7 GPa, respectively. In contrast the adhesion force is homogeneous through the whole surface of the TPU and P3TMA films (average values: 7.2 and 5.0 nN, respectively), whereas for the blend it depends on the phase distribution. Thus, the adhesion force is higher for the TPU-rich domains than for the P3TMA-rich domains. Finally, the utility of the nanomembranes for tissue engineering applications has been proved by cellular proliferation assays. Results show that the blend is more active as a cellular matrix than each of the two individual polymers.</description><subject>Adhesion</subject><subject>Blends</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Polymer blends</subject><subject>Semiconductors</subject><subject>Urethane thermoplastic elastomers</subject><issn>1759-9954</issn><issn>1759-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFUEtLxDAQDqLgsu7FX9CjiNW823jT9QkLetCDp5KmCY20TU1SYf-DP9q4FZ3LDPO9hgHgGMFzBIm4WOPnNww5ozd7YIEKJnIhON7_mxk9BKsQ3mEqgigmfAG-rq2TKtpPnQ1ycL3uay8HHTJnsqB7q9zQTCo6n42u28bWurHVg87k0GSx1b53YydDtGqHT17HNskvZ0x2ZzvXEH3ymLzsdro5SCWiVWk1ejdqH60OR-DAyC7o1W9fgte725f1Q755un9cX21yhTmNOTOmhk1TcEQFqQnjDKESS4KY5KjmUENsGBO6KKihnHEqcC2xMqKknJfCkCU4mX1T9MekQ6x6G5TuunS6m0KFcEk4h5jBRD2dqcq7ELw21ehtL_22QrD6-Xr1_3XyDTH-eEQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Pérez Madrigal, Maria M.</creator><creator>Giannotti, Marina I.</creator><creator>Oncins, Gerard</creator><creator>Franco, Lourdes</creator><creator>Armelin, Elaine</creator><creator>Puiggalí, Jordi</creator><creator>Sanz, Fausto</creator><creator>del Valle, Luis J.</creator><creator>Alemán, Carlos</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties</title><author>Pérez Madrigal, Maria M. ; Giannotti, Marina I. ; Oncins, Gerard ; Franco, Lourdes ; Armelin, Elaine ; Puiggalí, Jordi ; Sanz, Fausto ; del Valle, Luis J. ; Alemán, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-5ffb0dd761493b35651182a315a61b60e02f559e774f4656492ba2cf9846689f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adhesion</topic><topic>Blends</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Polymer blends</topic><topic>Semiconductors</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez Madrigal, Maria M.</creatorcontrib><creatorcontrib>Giannotti, Marina I.</creatorcontrib><creatorcontrib>Oncins, Gerard</creatorcontrib><creatorcontrib>Franco, Lourdes</creatorcontrib><creatorcontrib>Armelin, Elaine</creatorcontrib><creatorcontrib>Puiggalí, Jordi</creatorcontrib><creatorcontrib>Sanz, Fausto</creatorcontrib><creatorcontrib>del Valle, Luis J.</creatorcontrib><creatorcontrib>Alemán, Carlos</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez Madrigal, Maria M.</au><au>Giannotti, Marina I.</au><au>Oncins, Gerard</au><au>Franco, Lourdes</au><au>Armelin, Elaine</au><au>Puiggalí, Jordi</au><au>Sanz, Fausto</au><au>del Valle, Luis J.</au><au>Alemán, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties</atitle><jtitle>Polymer chemistry</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>4</volume><issue>3</issue><spage>568</spage><epage>583</epage><pages>568-583</pages><issn>1759-9954</issn><eissn>1759-9962</eissn><abstract>Free-standing and supported nanomembranes have been prepared by spin-coating mixtures of a semiconducting polythiophene (P3TMA) derivative and thermoplastic polyurethane (TPU). Thermal studies of TPU:P3TMA blends with 60 : 40, 50 : 50, 40 : 60 and 20 : 80 weight ratios indicate a partial miscibility of the two components. Analysis of the glass transition temperatures allowed us to identify the highest miscibility for the blend with a 40 : 60 weight ratio, this composition being used to prepare both self-standing and supported nanomembranes. The thickness of ultra-thin films made with the 40 : 60 blend ranged from 11 to 93 nm, while the average roughness was 16.3 plus or minus 0.8 nm. In these films the P3TMA-rich phase forms granules, which are dispersed throughout the rest of the film. Quantitative nanomechanical mapping has been used to determine the Young's modulus value by applying the Derjanguin-Mueller-Toporov (DMT) contact mechanics model and the adhesion force of ultra-thin films. The modulus depends on the thickness of the films, values determined for the thicker (80-140 nm)/thinner (10-40 nm) regions of TPU, P3TMA and blend samples being 25/35 MPa, 3.5/12 GPa and 0.9/1.7 GPa, respectively. In contrast the adhesion force is homogeneous through the whole surface of the TPU and P3TMA films (average values: 7.2 and 5.0 nN, respectively), whereas for the blend it depends on the phase distribution. Thus, the adhesion force is higher for the TPU-rich domains than for the P3TMA-rich domains. Finally, the utility of the nanomembranes for tissue engineering applications has been proved by cellular proliferation assays. Results show that the blend is more active as a cellular matrix than each of the two individual polymers.</abstract><doi>10.1039/C2PY20654D</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-9954 |
ispartof | Polymer chemistry, 2013-01, Vol.4 (3), p.568-583 |
issn | 1759-9954 1759-9962 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283660250 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adhesion Blends Nanocomposites Nanomaterials Nanostructure Polymer blends Semiconductors Urethane thermoplastic elastomers |
title | Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactive%20nanomembranes%20of%20semiconductor%20polythiophene%20and%20thermoplastic%20polyurethane:%20thermal,%20nanostructural%20and%20nanomechanical%20properties&rft.jtitle=Polymer%20chemistry&rft.au=P%C3%A9rez%20Madrigal,%20Maria%20M.&rft.date=2013-01-01&rft.volume=4&rft.issue=3&rft.spage=568&rft.epage=583&rft.pages=568-583&rft.issn=1759-9954&rft.eissn=1759-9962&rft_id=info:doi/10.1039/C2PY20654D&rft_dat=%3Cproquest_cross%3E1283660250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283660250&rft_id=info:pmid/&rfr_iscdi=true |