Comparative study of moment based parameterization for morphological texture description
► Study of Fourier transform based parameterization measures. ► Comparative study of several moment based parameterization measures. ► Five texture collections used for validation. ► Combined use of parameterization methods improves descriptor performance. ► Superior noise robustness achieved with c...
Gespeichert in:
Veröffentlicht in: | Journal of visual communication and image representation 2012-11, Vol.23 (8), p.1213-1224 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1224 |
---|---|
container_issue | 8 |
container_start_page | 1213 |
container_title | Journal of visual communication and image representation |
container_volume | 23 |
creator | Aptoula, Erchan |
description | ► Study of Fourier transform based parameterization measures. ► Comparative study of several moment based parameterization measures. ► Five texture collections used for validation. ► Combined use of parameterization methods improves descriptor performance. ► Superior noise robustness achieved with combined parameterization methods.
The two principal morphological texture descriptors, granulometry and morphological covariance, rely on the common principle of successive filtering of an image using a variety of structuring elements, from which feature vectors are subsequently computed. A crucial stage of their computation is the numerical characterization or parameterization of each of the filtered images. In this regard, the zero-th statistical moment is the traditional measure, while the use of higher order moments has also been reported. In this paper, we present the results of a comparative study, concentrating on the potential of various statistical moments for the task of parameterization, while additionally investigating the contribution of Fourier transform moments. The experiments are conducted with focus on texture description effectiveness and on noise robustness, using publicly available texture collections: Outex, CUReT and KTH-TIPS2b, where it is shown that the combination of moments leads to superior classification performance even at high noise levels. |
doi_str_mv | 10.1016/j.jvcir.2012.08.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283659007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047320312001423</els_id><sourcerecordid>1283659007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-146c6fe2209c225a1fa68a5b82fa90175f24994c853dcd8a03c676f8bdbf32fc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-Ai89emmdJG3aHjzI4hcseFHwFtJ0oiltU5N0cf31tq5nT_PCPO_APFF0SSAlQPh1m7Y7ZVxKgdAUyhQgP4pWBKo8qaDgx0vOioRRYKfRmfctALCKZavobWP7UToZzA5jH6ZmH1sd97bHIcS19NjEy7rHgM58z5gdYm3dTLjxw3b23SjZxQG_wuQwbtArZ8aFOo9OtOw8XvzNdfR6f_eyeUy2zw9Pm9ttohjjISEZV1wjpVApSnNJtOSlzOuSalkBKXJNs6rKVJmzRjWlBKZ4wXVZN7VmVCu2jq4Od0dnPyf0QfTGK-w6OaCdvCC0ZDyvAIoZZQdUOeu9Qy1GZ3rp9oKAWDyKVvx6FItHAaWYPc6tm0ML5y92Bp3wyuCgsDEOVRCNNf_2fwBcen8i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283659007</pqid></control><display><type>article</type><title>Comparative study of moment based parameterization for morphological texture description</title><source>Elsevier ScienceDirect Journals</source><creator>Aptoula, Erchan</creator><creatorcontrib>Aptoula, Erchan</creatorcontrib><description>► Study of Fourier transform based parameterization measures. ► Comparative study of several moment based parameterization measures. ► Five texture collections used for validation. ► Combined use of parameterization methods improves descriptor performance. ► Superior noise robustness achieved with combined parameterization methods.
The two principal morphological texture descriptors, granulometry and morphological covariance, rely on the common principle of successive filtering of an image using a variety of structuring elements, from which feature vectors are subsequently computed. A crucial stage of their computation is the numerical characterization or parameterization of each of the filtered images. In this regard, the zero-th statistical moment is the traditional measure, while the use of higher order moments has also been reported. In this paper, we present the results of a comparative study, concentrating on the potential of various statistical moments for the task of parameterization, while additionally investigating the contribution of Fourier transform moments. The experiments are conducted with focus on texture description effectiveness and on noise robustness, using publicly available texture collections: Outex, CUReT and KTH-TIPS2b, where it is shown that the combination of moments leads to superior classification performance even at high noise levels.</description><identifier>ISSN: 1047-3203</identifier><identifier>EISSN: 1095-9076</identifier><identifier>DOI: 10.1016/j.jvcir.2012.08.005</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computation ; Filtering ; Filtration ; Fourier transform ; Granulometry ; Moment invariants ; Morphological Covariance ; Noise levels ; Noise robustness ; Parameterization ; Parametrization ; Statistical moments ; Surface layer ; Texture ; Texture analysis</subject><ispartof>Journal of visual communication and image representation, 2012-11, Vol.23 (8), p.1213-1224</ispartof><rights>2012 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-146c6fe2209c225a1fa68a5b82fa90175f24994c853dcd8a03c676f8bdbf32fc3</citedby><cites>FETCH-LOGICAL-c336t-146c6fe2209c225a1fa68a5b82fa90175f24994c853dcd8a03c676f8bdbf32fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047320312001423$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Aptoula, Erchan</creatorcontrib><title>Comparative study of moment based parameterization for morphological texture description</title><title>Journal of visual communication and image representation</title><description>► Study of Fourier transform based parameterization measures. ► Comparative study of several moment based parameterization measures. ► Five texture collections used for validation. ► Combined use of parameterization methods improves descriptor performance. ► Superior noise robustness achieved with combined parameterization methods.
The two principal morphological texture descriptors, granulometry and morphological covariance, rely on the common principle of successive filtering of an image using a variety of structuring elements, from which feature vectors are subsequently computed. A crucial stage of their computation is the numerical characterization or parameterization of each of the filtered images. In this regard, the zero-th statistical moment is the traditional measure, while the use of higher order moments has also been reported. In this paper, we present the results of a comparative study, concentrating on the potential of various statistical moments for the task of parameterization, while additionally investigating the contribution of Fourier transform moments. The experiments are conducted with focus on texture description effectiveness and on noise robustness, using publicly available texture collections: Outex, CUReT and KTH-TIPS2b, where it is shown that the combination of moments leads to superior classification performance even at high noise levels.</description><subject>Computation</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Fourier transform</subject><subject>Granulometry</subject><subject>Moment invariants</subject><subject>Morphological Covariance</subject><subject>Noise levels</subject><subject>Noise robustness</subject><subject>Parameterization</subject><subject>Parametrization</subject><subject>Statistical moments</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Texture analysis</subject><issn>1047-3203</issn><issn>1095-9076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-Ai89emmdJG3aHjzI4hcseFHwFtJ0oiltU5N0cf31tq5nT_PCPO_APFF0SSAlQPh1m7Y7ZVxKgdAUyhQgP4pWBKo8qaDgx0vOioRRYKfRmfctALCKZavobWP7UToZzA5jH6ZmH1sd97bHIcS19NjEy7rHgM58z5gdYm3dTLjxw3b23SjZxQG_wuQwbtArZ8aFOo9OtOw8XvzNdfR6f_eyeUy2zw9Pm9ttohjjISEZV1wjpVApSnNJtOSlzOuSalkBKXJNs6rKVJmzRjWlBKZ4wXVZN7VmVCu2jq4Od0dnPyf0QfTGK-w6OaCdvCC0ZDyvAIoZZQdUOeu9Qy1GZ3rp9oKAWDyKVvx6FItHAaWYPc6tm0ML5y92Bp3wyuCgsDEOVRCNNf_2fwBcen8i</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Aptoula, Erchan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Comparative study of moment based parameterization for morphological texture description</title><author>Aptoula, Erchan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-146c6fe2209c225a1fa68a5b82fa90175f24994c853dcd8a03c676f8bdbf32fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computation</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Fourier transform</topic><topic>Granulometry</topic><topic>Moment invariants</topic><topic>Morphological Covariance</topic><topic>Noise levels</topic><topic>Noise robustness</topic><topic>Parameterization</topic><topic>Parametrization</topic><topic>Statistical moments</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Texture analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aptoula, Erchan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of visual communication and image representation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aptoula, Erchan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative study of moment based parameterization for morphological texture description</atitle><jtitle>Journal of visual communication and image representation</jtitle><date>2012-11</date><risdate>2012</risdate><volume>23</volume><issue>8</issue><spage>1213</spage><epage>1224</epage><pages>1213-1224</pages><issn>1047-3203</issn><eissn>1095-9076</eissn><abstract>► Study of Fourier transform based parameterization measures. ► Comparative study of several moment based parameterization measures. ► Five texture collections used for validation. ► Combined use of parameterization methods improves descriptor performance. ► Superior noise robustness achieved with combined parameterization methods.
The two principal morphological texture descriptors, granulometry and morphological covariance, rely on the common principle of successive filtering of an image using a variety of structuring elements, from which feature vectors are subsequently computed. A crucial stage of their computation is the numerical characterization or parameterization of each of the filtered images. In this regard, the zero-th statistical moment is the traditional measure, while the use of higher order moments has also been reported. In this paper, we present the results of a comparative study, concentrating on the potential of various statistical moments for the task of parameterization, while additionally investigating the contribution of Fourier transform moments. The experiments are conducted with focus on texture description effectiveness and on noise robustness, using publicly available texture collections: Outex, CUReT and KTH-TIPS2b, where it is shown that the combination of moments leads to superior classification performance even at high noise levels.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jvcir.2012.08.005</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-3203 |
ispartof | Journal of visual communication and image representation, 2012-11, Vol.23 (8), p.1213-1224 |
issn | 1047-3203 1095-9076 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283659007 |
source | Elsevier ScienceDirect Journals |
subjects | Computation Filtering Filtration Fourier transform Granulometry Moment invariants Morphological Covariance Noise levels Noise robustness Parameterization Parametrization Statistical moments Surface layer Texture Texture analysis |
title | Comparative study of moment based parameterization for morphological texture description |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20study%20of%20moment%20based%20parameterization%20for%20morphological%20texture%20description&rft.jtitle=Journal%20of%20visual%20communication%20and%20image%20representation&rft.au=Aptoula,%20Erchan&rft.date=2012-11&rft.volume=23&rft.issue=8&rft.spage=1213&rft.epage=1224&rft.pages=1213-1224&rft.issn=1047-3203&rft.eissn=1095-9076&rft_id=info:doi/10.1016/j.jvcir.2012.08.005&rft_dat=%3Cproquest_cross%3E1283659007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283659007&rft_id=info:pmid/&rft_els_id=S1047320312001423&rfr_iscdi=true |