Comparative study of moment based parameterization for morphological texture description

► Study of Fourier transform based parameterization measures. ► Comparative study of several moment based parameterization measures. ► Five texture collections used for validation. ► Combined use of parameterization methods improves descriptor performance. ► Superior noise robustness achieved with c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visual communication and image representation 2012-11, Vol.23 (8), p.1213-1224
1. Verfasser: Aptoula, Erchan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1224
container_issue 8
container_start_page 1213
container_title Journal of visual communication and image representation
container_volume 23
creator Aptoula, Erchan
description ► Study of Fourier transform based parameterization measures. ► Comparative study of several moment based parameterization measures. ► Five texture collections used for validation. ► Combined use of parameterization methods improves descriptor performance. ► Superior noise robustness achieved with combined parameterization methods. The two principal morphological texture descriptors, granulometry and morphological covariance, rely on the common principle of successive filtering of an image using a variety of structuring elements, from which feature vectors are subsequently computed. A crucial stage of their computation is the numerical characterization or parameterization of each of the filtered images. In this regard, the zero-th statistical moment is the traditional measure, while the use of higher order moments has also been reported. In this paper, we present the results of a comparative study, concentrating on the potential of various statistical moments for the task of parameterization, while additionally investigating the contribution of Fourier transform moments. The experiments are conducted with focus on texture description effectiveness and on noise robustness, using publicly available texture collections: Outex, CUReT and KTH-TIPS2b, where it is shown that the combination of moments leads to superior classification performance even at high noise levels.
doi_str_mv 10.1016/j.jvcir.2012.08.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283659007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047320312001423</els_id><sourcerecordid>1283659007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-146c6fe2209c225a1fa68a5b82fa90175f24994c853dcd8a03c676f8bdbf32fc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-Ai89emmdJG3aHjzI4hcseFHwFtJ0oiltU5N0cf31tq5nT_PCPO_APFF0SSAlQPh1m7Y7ZVxKgdAUyhQgP4pWBKo8qaDgx0vOioRRYKfRmfctALCKZavobWP7UToZzA5jH6ZmH1sd97bHIcS19NjEy7rHgM58z5gdYm3dTLjxw3b23SjZxQG_wuQwbtArZ8aFOo9OtOw8XvzNdfR6f_eyeUy2zw9Pm9ttohjjISEZV1wjpVApSnNJtOSlzOuSalkBKXJNs6rKVJmzRjWlBKZ4wXVZN7VmVCu2jq4Od0dnPyf0QfTGK-w6OaCdvCC0ZDyvAIoZZQdUOeu9Qy1GZ3rp9oKAWDyKVvx6FItHAaWYPc6tm0ML5y92Bp3wyuCgsDEOVRCNNf_2fwBcen8i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283659007</pqid></control><display><type>article</type><title>Comparative study of moment based parameterization for morphological texture description</title><source>Elsevier ScienceDirect Journals</source><creator>Aptoula, Erchan</creator><creatorcontrib>Aptoula, Erchan</creatorcontrib><description>► Study of Fourier transform based parameterization measures. ► Comparative study of several moment based parameterization measures. ► Five texture collections used for validation. ► Combined use of parameterization methods improves descriptor performance. ► Superior noise robustness achieved with combined parameterization methods. The two principal morphological texture descriptors, granulometry and morphological covariance, rely on the common principle of successive filtering of an image using a variety of structuring elements, from which feature vectors are subsequently computed. A crucial stage of their computation is the numerical characterization or parameterization of each of the filtered images. In this regard, the zero-th statistical moment is the traditional measure, while the use of higher order moments has also been reported. In this paper, we present the results of a comparative study, concentrating on the potential of various statistical moments for the task of parameterization, while additionally investigating the contribution of Fourier transform moments. The experiments are conducted with focus on texture description effectiveness and on noise robustness, using publicly available texture collections: Outex, CUReT and KTH-TIPS2b, where it is shown that the combination of moments leads to superior classification performance even at high noise levels.</description><identifier>ISSN: 1047-3203</identifier><identifier>EISSN: 1095-9076</identifier><identifier>DOI: 10.1016/j.jvcir.2012.08.005</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computation ; Filtering ; Filtration ; Fourier transform ; Granulometry ; Moment invariants ; Morphological Covariance ; Noise levels ; Noise robustness ; Parameterization ; Parametrization ; Statistical moments ; Surface layer ; Texture ; Texture analysis</subject><ispartof>Journal of visual communication and image representation, 2012-11, Vol.23 (8), p.1213-1224</ispartof><rights>2012 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-146c6fe2209c225a1fa68a5b82fa90175f24994c853dcd8a03c676f8bdbf32fc3</citedby><cites>FETCH-LOGICAL-c336t-146c6fe2209c225a1fa68a5b82fa90175f24994c853dcd8a03c676f8bdbf32fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047320312001423$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Aptoula, Erchan</creatorcontrib><title>Comparative study of moment based parameterization for morphological texture description</title><title>Journal of visual communication and image representation</title><description>► Study of Fourier transform based parameterization measures. ► Comparative study of several moment based parameterization measures. ► Five texture collections used for validation. ► Combined use of parameterization methods improves descriptor performance. ► Superior noise robustness achieved with combined parameterization methods. The two principal morphological texture descriptors, granulometry and morphological covariance, rely on the common principle of successive filtering of an image using a variety of structuring elements, from which feature vectors are subsequently computed. A crucial stage of their computation is the numerical characterization or parameterization of each of the filtered images. In this regard, the zero-th statistical moment is the traditional measure, while the use of higher order moments has also been reported. In this paper, we present the results of a comparative study, concentrating on the potential of various statistical moments for the task of parameterization, while additionally investigating the contribution of Fourier transform moments. The experiments are conducted with focus on texture description effectiveness and on noise robustness, using publicly available texture collections: Outex, CUReT and KTH-TIPS2b, where it is shown that the combination of moments leads to superior classification performance even at high noise levels.</description><subject>Computation</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Fourier transform</subject><subject>Granulometry</subject><subject>Moment invariants</subject><subject>Morphological Covariance</subject><subject>Noise levels</subject><subject>Noise robustness</subject><subject>Parameterization</subject><subject>Parametrization</subject><subject>Statistical moments</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Texture analysis</subject><issn>1047-3203</issn><issn>1095-9076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-Ai89emmdJG3aHjzI4hcseFHwFtJ0oiltU5N0cf31tq5nT_PCPO_APFF0SSAlQPh1m7Y7ZVxKgdAUyhQgP4pWBKo8qaDgx0vOioRRYKfRmfctALCKZavobWP7UToZzA5jH6ZmH1sd97bHIcS19NjEy7rHgM58z5gdYm3dTLjxw3b23SjZxQG_wuQwbtArZ8aFOo9OtOw8XvzNdfR6f_eyeUy2zw9Pm9ttohjjISEZV1wjpVApSnNJtOSlzOuSalkBKXJNs6rKVJmzRjWlBKZ4wXVZN7VmVCu2jq4Od0dnPyf0QfTGK-w6OaCdvCC0ZDyvAIoZZQdUOeu9Qy1GZ3rp9oKAWDyKVvx6FItHAaWYPc6tm0ML5y92Bp3wyuCgsDEOVRCNNf_2fwBcen8i</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Aptoula, Erchan</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Comparative study of moment based parameterization for morphological texture description</title><author>Aptoula, Erchan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-146c6fe2209c225a1fa68a5b82fa90175f24994c853dcd8a03c676f8bdbf32fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computation</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Fourier transform</topic><topic>Granulometry</topic><topic>Moment invariants</topic><topic>Morphological Covariance</topic><topic>Noise levels</topic><topic>Noise robustness</topic><topic>Parameterization</topic><topic>Parametrization</topic><topic>Statistical moments</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Texture analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aptoula, Erchan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of visual communication and image representation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aptoula, Erchan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative study of moment based parameterization for morphological texture description</atitle><jtitle>Journal of visual communication and image representation</jtitle><date>2012-11</date><risdate>2012</risdate><volume>23</volume><issue>8</issue><spage>1213</spage><epage>1224</epage><pages>1213-1224</pages><issn>1047-3203</issn><eissn>1095-9076</eissn><abstract>► Study of Fourier transform based parameterization measures. ► Comparative study of several moment based parameterization measures. ► Five texture collections used for validation. ► Combined use of parameterization methods improves descriptor performance. ► Superior noise robustness achieved with combined parameterization methods. The two principal morphological texture descriptors, granulometry and morphological covariance, rely on the common principle of successive filtering of an image using a variety of structuring elements, from which feature vectors are subsequently computed. A crucial stage of their computation is the numerical characterization or parameterization of each of the filtered images. In this regard, the zero-th statistical moment is the traditional measure, while the use of higher order moments has also been reported. In this paper, we present the results of a comparative study, concentrating on the potential of various statistical moments for the task of parameterization, while additionally investigating the contribution of Fourier transform moments. The experiments are conducted with focus on texture description effectiveness and on noise robustness, using publicly available texture collections: Outex, CUReT and KTH-TIPS2b, where it is shown that the combination of moments leads to superior classification performance even at high noise levels.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jvcir.2012.08.005</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-3203
ispartof Journal of visual communication and image representation, 2012-11, Vol.23 (8), p.1213-1224
issn 1047-3203
1095-9076
language eng
recordid cdi_proquest_miscellaneous_1283659007
source Elsevier ScienceDirect Journals
subjects Computation
Filtering
Filtration
Fourier transform
Granulometry
Moment invariants
Morphological Covariance
Noise levels
Noise robustness
Parameterization
Parametrization
Statistical moments
Surface layer
Texture
Texture analysis
title Comparative study of moment based parameterization for morphological texture description
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20study%20of%20moment%20based%20parameterization%20for%20morphological%20texture%20description&rft.jtitle=Journal%20of%20visual%20communication%20and%20image%20representation&rft.au=Aptoula,%20Erchan&rft.date=2012-11&rft.volume=23&rft.issue=8&rft.spage=1213&rft.epage=1224&rft.pages=1213-1224&rft.issn=1047-3203&rft.eissn=1095-9076&rft_id=info:doi/10.1016/j.jvcir.2012.08.005&rft_dat=%3Cproquest_cross%3E1283659007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283659007&rft_id=info:pmid/&rft_els_id=S1047320312001423&rfr_iscdi=true