Generalization errors of Laplacian regularized least squares regression
Semi-supervised learning is an emerging computational paradigm for machine learning, that aims to make better use of large amounts of inexpensive unlabeled data to improve the learning performance. While various methods have been proposed based on different intuitions, the crucial issue of generaliz...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2012-09, Vol.55 (9), p.1859-1868 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1868 |
---|---|
container_issue | 9 |
container_start_page | 1859 |
container_title | Science China. Mathematics |
container_volume | 55 |
creator | Cao, Ying Chen, DiRong |
description | Semi-supervised learning is an emerging computational paradigm for machine learning, that aims to make better use of large amounts of inexpensive unlabeled data to improve the learning performance. While various methods have been proposed based on different intuitions, the crucial issue of generalization performance is still poorly understood. In this paper, we investigate the convergence property of the Laplacian regularized least squares regression, a semi-supervised learning algorithm based on manifold regularization. Moreover, the improvement of error bounds in terms of the number of labeled and unlabeled data is presented for the first time as far as we know. The convergence rate depends on the approximation property and the capacity of the reproducing kernel Hilbert space measured by covering numbers. Some new techniques are exploited for the analysis since an extra regularizer is introduced. |
doi_str_mv | 10.1007/s11425-012-4438-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283658272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42998062</cqvip_id><sourcerecordid>1671568758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-1743ae96681f46f02e06d198519f7b8762a7e25b177d30dcd01c5cbf4d48269c3</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EEhX0B7CFjcXg748RVVCQKrHAbLnOpaRK49ZuBvrrcZWKEfDgs3TPe-e7F6EbSu4pIfohUyqYxIQyLAQ3mJ-hCTXK4nKx8_JWWmDNDL9E05zXpBxuidB8guZz6CH5rj34fRv7ClKKKVexqRZ-2_nQ-r5KsBo6n9oD1FUHPu-rvBt8gnzMlJCL8BpdNL7LMD3FK_Tx_PQ-e8GLt_nr7HGBg6B8j6kW3INVytBGqIYwIKqm1khqG700WjGvgckl1brmpA41oUGGZSNqYZiygV-hu7HuNsXdAHnvNm0O0HW-hzhkV0alUhktzd-oLN9g1oh_oGV3ShqmWUHpiIYUc07QuG1qNz59OUrc0Q03uuGKG-7ohuNFw0ZNLmy_guTWcUh92dOvottTo8_Yr3ZF99NJMGsNUYx_A98Plq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283658272</pqid></control><display><type>article</type><title>Generalization errors of Laplacian regularized least squares regression</title><source>SpringerLink Journals (MCLS)</source><source>Alma/SFX Local Collection</source><creator>Cao, Ying ; Chen, DiRong</creator><creatorcontrib>Cao, Ying ; Chen, DiRong</creatorcontrib><description>Semi-supervised learning is an emerging computational paradigm for machine learning, that aims to make better use of large amounts of inexpensive unlabeled data to improve the learning performance. While various methods have been proposed based on different intuitions, the crucial issue of generalization performance is still poorly understood. In this paper, we investigate the convergence property of the Laplacian regularized least squares regression, a semi-supervised learning algorithm based on manifold regularization. Moreover, the improvement of error bounds in terms of the number of labeled and unlabeled data is presented for the first time as far as we know. The convergence rate depends on the approximation property and the capacity of the reproducing kernel Hilbert space measured by covering numbers. Some new techniques are exploited for the analysis since an extra regularizer is introduced.</description><identifier>ISSN: 1674-7283</identifier><identifier>ISSN: 1006-9283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-012-4438-3</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Algorithms ; Applications of Mathematics ; China ; Convergence ; Errors ; Hilbert space ; Learning ; Least squares method ; Mathematics ; Mathematics and Statistics ; Regression ; 再生核Hilbert空间 ; 半监督学习 ; 学习算法 ; 拉普拉斯算子 ; 最小二乘回归 ; 机器学习 ; 正则化 ; 泛化性能</subject><ispartof>Science China. Mathematics, 2012-09, Vol.55 (9), p.1859-1868</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-1743ae96681f46f02e06d198519f7b8762a7e25b177d30dcd01c5cbf4d48269c3</citedby><cites>FETCH-LOGICAL-c413t-1743ae96681f46f02e06d198519f7b8762a7e25b177d30dcd01c5cbf4d48269c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-012-4438-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-012-4438-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cao, Ying</creatorcontrib><creatorcontrib>Chen, DiRong</creatorcontrib><title>Generalization errors of Laplacian regularized least squares regression</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>Semi-supervised learning is an emerging computational paradigm for machine learning, that aims to make better use of large amounts of inexpensive unlabeled data to improve the learning performance. While various methods have been proposed based on different intuitions, the crucial issue of generalization performance is still poorly understood. In this paper, we investigate the convergence property of the Laplacian regularized least squares regression, a semi-supervised learning algorithm based on manifold regularization. Moreover, the improvement of error bounds in terms of the number of labeled and unlabeled data is presented for the first time as far as we know. The convergence rate depends on the approximation property and the capacity of the reproducing kernel Hilbert space measured by covering numbers. Some new techniques are exploited for the analysis since an extra regularizer is introduced.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>China</subject><subject>Convergence</subject><subject>Errors</subject><subject>Hilbert space</subject><subject>Learning</subject><subject>Least squares method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regression</subject><subject>再生核Hilbert空间</subject><subject>半监督学习</subject><subject>学习算法</subject><subject>拉普拉斯算子</subject><subject>最小二乘回归</subject><subject>机器学习</subject><subject>正则化</subject><subject>泛化性能</subject><issn>1674-7283</issn><issn>1006-9283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkT1PwzAQhi0EEhX0B7CFjcXg748RVVCQKrHAbLnOpaRK49ZuBvrrcZWKEfDgs3TPe-e7F6EbSu4pIfohUyqYxIQyLAQ3mJ-hCTXK4nKx8_JWWmDNDL9E05zXpBxuidB8guZz6CH5rj34fRv7ClKKKVexqRZ-2_nQ-r5KsBo6n9oD1FUHPu-rvBt8gnzMlJCL8BpdNL7LMD3FK_Tx_PQ-e8GLt_nr7HGBg6B8j6kW3INVytBGqIYwIKqm1khqG700WjGvgckl1brmpA41oUGGZSNqYZiygV-hu7HuNsXdAHnvNm0O0HW-hzhkV0alUhktzd-oLN9g1oh_oGV3ShqmWUHpiIYUc07QuG1qNz59OUrc0Q03uuGKG-7ohuNFw0ZNLmy_guTWcUh92dOvottTo8_Yr3ZF99NJMGsNUYx_A98Plq8</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Cao, Ying</creator><creator>Chen, DiRong</creator><general>SP Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20120901</creationdate><title>Generalization errors of Laplacian regularized least squares regression</title><author>Cao, Ying ; Chen, DiRong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-1743ae96681f46f02e06d198519f7b8762a7e25b177d30dcd01c5cbf4d48269c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>China</topic><topic>Convergence</topic><topic>Errors</topic><topic>Hilbert space</topic><topic>Learning</topic><topic>Least squares method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regression</topic><topic>再生核Hilbert空间</topic><topic>半监督学习</topic><topic>学习算法</topic><topic>拉普拉斯算子</topic><topic>最小二乘回归</topic><topic>机器学习</topic><topic>正则化</topic><topic>泛化性能</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ying</creatorcontrib><creatorcontrib>Chen, DiRong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Ying</au><au>Chen, DiRong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization errors of Laplacian regularized least squares regression</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>55</volume><issue>9</issue><spage>1859</spage><epage>1868</epage><pages>1859-1868</pages><issn>1674-7283</issn><issn>1006-9283</issn><eissn>1869-1862</eissn><abstract>Semi-supervised learning is an emerging computational paradigm for machine learning, that aims to make better use of large amounts of inexpensive unlabeled data to improve the learning performance. While various methods have been proposed based on different intuitions, the crucial issue of generalization performance is still poorly understood. In this paper, we investigate the convergence property of the Laplacian regularized least squares regression, a semi-supervised learning algorithm based on manifold regularization. Moreover, the improvement of error bounds in terms of the number of labeled and unlabeled data is presented for the first time as far as we know. The convergence rate depends on the approximation property and the capacity of the reproducing kernel Hilbert space measured by covering numbers. Some new techniques are exploited for the analysis since an extra regularizer is introduced.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11425-012-4438-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2012-09, Vol.55 (9), p.1859-1868 |
issn | 1674-7283 1006-9283 1869-1862 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283658272 |
source | SpringerLink Journals (MCLS); Alma/SFX Local Collection |
subjects | Algorithms Applications of Mathematics China Convergence Errors Hilbert space Learning Least squares method Mathematics Mathematics and Statistics Regression 再生核Hilbert空间 半监督学习 学习算法 拉普拉斯算子 最小二乘回归 机器学习 正则化 泛化性能 |
title | Generalization errors of Laplacian regularized least squares regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20errors%20of%20Laplacian%20regularized%20least%20squares%20regression&rft.jtitle=Science%20China.%20Mathematics&rft.au=Cao,%20Ying&rft.date=2012-09-01&rft.volume=55&rft.issue=9&rft.spage=1859&rft.epage=1868&rft.pages=1859-1868&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-012-4438-3&rft_dat=%3Cproquest_cross%3E1671568758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283658272&rft_id=info:pmid/&rft_cqvip_id=42998062&rfr_iscdi=true |