An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity
In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of t...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2012-11, Vol.219 (6), p.3154-3177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3177 |
---|---|
container_issue | 6 |
container_start_page | 3154 |
container_title | Applied mathematics and computation |
container_volume | 219 |
creator | Vynnycky, M. O’Brien, M.A. |
description | In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. Even for mild viscosity variations, the classical isoviscous result due to Levich is found to hold at leading order. More severe viscosity variations lead to an involved asymptotic structure that was never previously adequately reconciled numerically; we achieve this successfully with the help of a finite-element method. |
doi_str_mv | 10.1016/j.amc.2012.09.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283657831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300312009484</els_id><sourcerecordid>1283657831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-e5ae50aafc5f890ca69e47cea72edf7efb3578079683a8661905312c56701e7c3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi1EJZbCA3DzkQMJ43hjx-JUVbRFqtoLPVuDMxFeJXawna727fFqOXMajfR_v2Y-xj4JaAUI9fXQ4uLaDkTXgmlhb96wnRi0bHq1N2_ZDsCoRgLId-x9zgcA0ErsdyzdBI75tKwlFu84hpGHbaHkHc48l2088TjxPMfjl7oS1h2zo1C4ryB_omOJwWPg07z5kR99-c0LLSslLFuiZqSVwnjOv_rsYvbl9IFdTThn-vhvXrOXu-8_bx-ax-f7H7c3j42TEkpDPVIPiJPrp8GAQ2Vorx2h7micNE2_ZK8H0EYNEgelhIFeis71SoMg7eQ1-3zpXVP8s1Eudqkn0DxjoLhlK7pBqlohRY2KS9SlmHOiya7JL5hOVoA9-7UHW_3as18Lxla_lfl2Yaj-8Oop2ew8BUejT-SKHaP_D_0X27CFGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283657831</pqid></control><display><type>article</type><title>An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vynnycky, M. ; O’Brien, M.A.</creator><creatorcontrib>Vynnycky, M. ; O’Brien, M.A.</creatorcontrib><description>In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. Even for mild viscosity variations, the classical isoviscous result due to Levich is found to hold at leading order. More severe viscosity variations lead to an involved asymptotic structure that was never previously adequately reconciled numerically; we achieve this successfully with the help of a finite-element method.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2012.09.049</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Ascent ; Asymptotic properties ; Asymptotics ; Buoyancy ; Finite element method ; Mathematical analysis ; Mathematical models ; Newtonian fluids ; Slow flow ; Temperature-dependent viscosity ; Viscosity</subject><ispartof>Applied mathematics and computation, 2012-11, Vol.219 (6), p.3154-3177</ispartof><rights>2012 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-e5ae50aafc5f890ca69e47cea72edf7efb3578079683a8661905312c56701e7c3</citedby><cites>FETCH-LOGICAL-c330t-e5ae50aafc5f890ca69e47cea72edf7efb3578079683a8661905312c56701e7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300312009484$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Vynnycky, M.</creatorcontrib><creatorcontrib>O’Brien, M.A.</creatorcontrib><title>An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity</title><title>Applied mathematics and computation</title><description>In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. Even for mild viscosity variations, the classical isoviscous result due to Levich is found to hold at leading order. More severe viscosity variations lead to an involved asymptotic structure that was never previously adequately reconciled numerically; we achieve this successfully with the help of a finite-element method.</description><subject>Ascent</subject><subject>Asymptotic properties</subject><subject>Asymptotics</subject><subject>Buoyancy</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Newtonian fluids</subject><subject>Slow flow</subject><subject>Temperature-dependent viscosity</subject><subject>Viscosity</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi1EJZbCA3DzkQMJ43hjx-JUVbRFqtoLPVuDMxFeJXawna727fFqOXMajfR_v2Y-xj4JaAUI9fXQ4uLaDkTXgmlhb96wnRi0bHq1N2_ZDsCoRgLId-x9zgcA0ErsdyzdBI75tKwlFu84hpGHbaHkHc48l2088TjxPMfjl7oS1h2zo1C4ryB_omOJwWPg07z5kR99-c0LLSslLFuiZqSVwnjOv_rsYvbl9IFdTThn-vhvXrOXu-8_bx-ax-f7H7c3j42TEkpDPVIPiJPrp8GAQ2Vorx2h7micNE2_ZK8H0EYNEgelhIFeis71SoMg7eQ1-3zpXVP8s1Eudqkn0DxjoLhlK7pBqlohRY2KS9SlmHOiya7JL5hOVoA9-7UHW_3as18Lxla_lfl2Yaj-8Oop2ew8BUejT-SKHaP_D_0X27CFGw</recordid><startdate>20121125</startdate><enddate>20121125</enddate><creator>Vynnycky, M.</creator><creator>O’Brien, M.A.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121125</creationdate><title>An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity</title><author>Vynnycky, M. ; O’Brien, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-e5ae50aafc5f890ca69e47cea72edf7efb3578079683a8661905312c56701e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ascent</topic><topic>Asymptotic properties</topic><topic>Asymptotics</topic><topic>Buoyancy</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Newtonian fluids</topic><topic>Slow flow</topic><topic>Temperature-dependent viscosity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vynnycky, M.</creatorcontrib><creatorcontrib>O’Brien, M.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vynnycky, M.</au><au>O’Brien, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity</atitle><jtitle>Applied mathematics and computation</jtitle><date>2012-11-25</date><risdate>2012</risdate><volume>219</volume><issue>6</issue><spage>3154</spage><epage>3177</epage><pages>3154-3177</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. Even for mild viscosity variations, the classical isoviscous result due to Levich is found to hold at leading order. More severe viscosity variations lead to an involved asymptotic structure that was never previously adequately reconciled numerically; we achieve this successfully with the help of a finite-element method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2012.09.049</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2012-11, Vol.219 (6), p.3154-3177 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283657831 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Ascent Asymptotic properties Asymptotics Buoyancy Finite element method Mathematical analysis Mathematical models Newtonian fluids Slow flow Temperature-dependent viscosity Viscosity |
title | An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20and%20numerical%20study%20of%20slow,%20steady%20ascent%20in%20a%20Newtonian%20fluid%20with%20temperature-dependent%20viscosity&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Vynnycky,%20M.&rft.date=2012-11-25&rft.volume=219&rft.issue=6&rft.spage=3154&rft.epage=3177&rft.pages=3154-3177&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2012.09.049&rft_dat=%3Cproquest_cross%3E1283657831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283657831&rft_id=info:pmid/&rft_els_id=S0096300312009484&rfr_iscdi=true |