An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity

In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2012-11, Vol.219 (6), p.3154-3177
Hauptverfasser: Vynnycky, M., O’Brien, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3177
container_issue 6
container_start_page 3154
container_title Applied mathematics and computation
container_volume 219
creator Vynnycky, M.
O’Brien, M.A.
description In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. Even for mild viscosity variations, the classical isoviscous result due to Levich is found to hold at leading order. More severe viscosity variations lead to an involved asymptotic structure that was never previously adequately reconciled numerically; we achieve this successfully with the help of a finite-element method.
doi_str_mv 10.1016/j.amc.2012.09.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283657831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300312009484</els_id><sourcerecordid>1283657831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-e5ae50aafc5f890ca69e47cea72edf7efb3578079683a8661905312c56701e7c3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi1EJZbCA3DzkQMJ43hjx-JUVbRFqtoLPVuDMxFeJXawna727fFqOXMajfR_v2Y-xj4JaAUI9fXQ4uLaDkTXgmlhb96wnRi0bHq1N2_ZDsCoRgLId-x9zgcA0ErsdyzdBI75tKwlFu84hpGHbaHkHc48l2088TjxPMfjl7oS1h2zo1C4ryB_omOJwWPg07z5kR99-c0LLSslLFuiZqSVwnjOv_rsYvbl9IFdTThn-vhvXrOXu-8_bx-ax-f7H7c3j42TEkpDPVIPiJPrp8GAQ2Vorx2h7micNE2_ZK8H0EYNEgelhIFeis71SoMg7eQ1-3zpXVP8s1Eudqkn0DxjoLhlK7pBqlohRY2KS9SlmHOiya7JL5hOVoA9-7UHW_3as18Lxla_lfl2Yaj-8Oop2ew8BUejT-SKHaP_D_0X27CFGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283657831</pqid></control><display><type>article</type><title>An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vynnycky, M. ; O’Brien, M.A.</creator><creatorcontrib>Vynnycky, M. ; O’Brien, M.A.</creatorcontrib><description>In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. Even for mild viscosity variations, the classical isoviscous result due to Levich is found to hold at leading order. More severe viscosity variations lead to an involved asymptotic structure that was never previously adequately reconciled numerically; we achieve this successfully with the help of a finite-element method.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2012.09.049</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Ascent ; Asymptotic properties ; Asymptotics ; Buoyancy ; Finite element method ; Mathematical analysis ; Mathematical models ; Newtonian fluids ; Slow flow ; Temperature-dependent viscosity ; Viscosity</subject><ispartof>Applied mathematics and computation, 2012-11, Vol.219 (6), p.3154-3177</ispartof><rights>2012 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-e5ae50aafc5f890ca69e47cea72edf7efb3578079683a8661905312c56701e7c3</citedby><cites>FETCH-LOGICAL-c330t-e5ae50aafc5f890ca69e47cea72edf7efb3578079683a8661905312c56701e7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300312009484$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Vynnycky, M.</creatorcontrib><creatorcontrib>O’Brien, M.A.</creatorcontrib><title>An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity</title><title>Applied mathematics and computation</title><description>In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. Even for mild viscosity variations, the classical isoviscous result due to Levich is found to hold at leading order. More severe viscosity variations lead to an involved asymptotic structure that was never previously adequately reconciled numerically; we achieve this successfully with the help of a finite-element method.</description><subject>Ascent</subject><subject>Asymptotic properties</subject><subject>Asymptotics</subject><subject>Buoyancy</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Newtonian fluids</subject><subject>Slow flow</subject><subject>Temperature-dependent viscosity</subject><subject>Viscosity</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi1EJZbCA3DzkQMJ43hjx-JUVbRFqtoLPVuDMxFeJXawna727fFqOXMajfR_v2Y-xj4JaAUI9fXQ4uLaDkTXgmlhb96wnRi0bHq1N2_ZDsCoRgLId-x9zgcA0ErsdyzdBI75tKwlFu84hpGHbaHkHc48l2088TjxPMfjl7oS1h2zo1C4ryB_omOJwWPg07z5kR99-c0LLSslLFuiZqSVwnjOv_rsYvbl9IFdTThn-vhvXrOXu-8_bx-ax-f7H7c3j42TEkpDPVIPiJPrp8GAQ2Vorx2h7micNE2_ZK8H0EYNEgelhIFeis71SoMg7eQ1-3zpXVP8s1Eudqkn0DxjoLhlK7pBqlohRY2KS9SlmHOiya7JL5hOVoA9-7UHW_3as18Lxla_lfl2Yaj-8Oop2ew8BUejT-SKHaP_D_0X27CFGw</recordid><startdate>20121125</startdate><enddate>20121125</enddate><creator>Vynnycky, M.</creator><creator>O’Brien, M.A.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121125</creationdate><title>An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity</title><author>Vynnycky, M. ; O’Brien, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-e5ae50aafc5f890ca69e47cea72edf7efb3578079683a8661905312c56701e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ascent</topic><topic>Asymptotic properties</topic><topic>Asymptotics</topic><topic>Buoyancy</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Newtonian fluids</topic><topic>Slow flow</topic><topic>Temperature-dependent viscosity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vynnycky, M.</creatorcontrib><creatorcontrib>O’Brien, M.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vynnycky, M.</au><au>O’Brien, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity</atitle><jtitle>Applied mathematics and computation</jtitle><date>2012-11-25</date><risdate>2012</risdate><volume>219</volume><issue>6</issue><spage>3154</spage><epage>3177</epage><pages>3154-3177</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. Even for mild viscosity variations, the classical isoviscous result due to Levich is found to hold at leading order. More severe viscosity variations lead to an involved asymptotic structure that was never previously adequately reconciled numerically; we achieve this successfully with the help of a finite-element method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2012.09.049</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2012-11, Vol.219 (6), p.3154-3177
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1283657831
source Elsevier ScienceDirect Journals Complete
subjects Ascent
Asymptotic properties
Asymptotics
Buoyancy
Finite element method
Mathematical analysis
Mathematical models
Newtonian fluids
Slow flow
Temperature-dependent viscosity
Viscosity
title An asymptotic and numerical study of slow, steady ascent in a Newtonian fluid with temperature-dependent viscosity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20and%20numerical%20study%20of%20slow,%20steady%20ascent%20in%20a%20Newtonian%20fluid%20with%20temperature-dependent%20viscosity&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Vynnycky,%20M.&rft.date=2012-11-25&rft.volume=219&rft.issue=6&rft.spage=3154&rft.epage=3177&rft.pages=3154-3177&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2012.09.049&rft_dat=%3Cproquest_cross%3E1283657831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283657831&rft_id=info:pmid/&rft_els_id=S0096300312009484&rfr_iscdi=true