A p-adaptive LCP formulation for the compressible Navier–Stokes equations

This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier–Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2013-01, Vol.233, p.324-338
Hauptverfasser: Cagnone, J.S., Vermeire, B.C., Nadarajah, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue
container_start_page 324
container_title Journal of computational physics
container_volume 233
creator Cagnone, J.S.
Vermeire, B.C.
Nadarajah, S.
description This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier–Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier–Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations.
doi_str_mv 10.1016/j.jcp.2012.08.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283653401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112005396</els_id><sourcerecordid>1283653401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-c7121cc807a15fe6821b479372b0ce51064e6da1c650f8003073314a4c1d8fec3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxAeyyQWKTMOMkjiNWqOIlKkAC1pY7mQiXtAl2Wokd_8Af8iWkFLFkNbM4947mCHGEkCCgOp0lM-oSCSgT0Ank6ZYYIZQQywLVthgBSIzLssRdsRfCDAB0numRuD2PuthWtuvdiqPJ-CGqWz9fNrZ37WK9R_0LR9TOO88huGnD0Z1dOfZfH5-PffvKIeK35Q8dDsRObZvAh79zXzxfXjyNr-PJ_dXN-HwSUyZVH1OBEok0FBbzmpWWOM2KMi3kFIhzBJWxqiySyqHWACkUaYqZzQgrXTOl--Jk09v59m3JoTdzF4ibxi64XQaDUqcqTzPAAcUNSr4NwXNtOu_m1r8bBLMWZ2ZmEGfW4gxoM4gbMse_9TaQbWpvF-TCX1CqAiRkauDONhwPv66VmECOF8SV80y9qVr3z5VvqEqC1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283653401</pqid></control><display><type>article</type><title>A p-adaptive LCP formulation for the compressible Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Cagnone, J.S. ; Vermeire, B.C. ; Nadarajah, S.</creator><creatorcontrib>Cagnone, J.S. ; Vermeire, B.C. ; Nadarajah, S.</creatorcontrib><description>This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier–Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier–Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.08.053</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Approximation ; Compressible Navier–Stokes equations ; Computational efficiency ; Computational techniques ; Exact sciences and technology ; Fluid flow ; Formulations ; High-order methods ; Interpolation ; Lifting-collocation-penalty formulation ; Liquid crystal polymers ; Mathematical analysis ; Mathematical methods in physics ; Physics ; Polynomial refinement ; Scalars</subject><ispartof>Journal of computational physics, 2013-01, Vol.233, p.324-338</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-c7121cc807a15fe6821b479372b0ce51064e6da1c650f8003073314a4c1d8fec3</citedby><cites>FETCH-LOGICAL-c426t-c7121cc807a15fe6821b479372b0ce51064e6da1c650f8003073314a4c1d8fec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2012.08.053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26702046$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cagnone, J.S.</creatorcontrib><creatorcontrib>Vermeire, B.C.</creatorcontrib><creatorcontrib>Nadarajah, S.</creatorcontrib><title>A p-adaptive LCP formulation for the compressible Navier–Stokes equations</title><title>Journal of computational physics</title><description>This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier–Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier–Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations.</description><subject>Approximation</subject><subject>Compressible Navier–Stokes equations</subject><subject>Computational efficiency</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Formulations</subject><subject>High-order methods</subject><subject>Interpolation</subject><subject>Lifting-collocation-penalty formulation</subject><subject>Liquid crystal polymers</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Polynomial refinement</subject><subject>Scalars</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxAeyyQWKTMOMkjiNWqOIlKkAC1pY7mQiXtAl2Wokd_8Af8iWkFLFkNbM4947mCHGEkCCgOp0lM-oSCSgT0Ank6ZYYIZQQywLVthgBSIzLssRdsRfCDAB0numRuD2PuthWtuvdiqPJ-CGqWz9fNrZ37WK9R_0LR9TOO88huGnD0Z1dOfZfH5-PffvKIeK35Q8dDsRObZvAh79zXzxfXjyNr-PJ_dXN-HwSUyZVH1OBEok0FBbzmpWWOM2KMi3kFIhzBJWxqiySyqHWACkUaYqZzQgrXTOl--Jk09v59m3JoTdzF4ibxi64XQaDUqcqTzPAAcUNSr4NwXNtOu_m1r8bBLMWZ2ZmEGfW4gxoM4gbMse_9TaQbWpvF-TCX1CqAiRkauDONhwPv66VmECOF8SV80y9qVr3z5VvqEqC1Q</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Cagnone, J.S.</creator><creator>Vermeire, B.C.</creator><creator>Nadarajah, S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130115</creationdate><title>A p-adaptive LCP formulation for the compressible Navier–Stokes equations</title><author>Cagnone, J.S. ; Vermeire, B.C. ; Nadarajah, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-c7121cc807a15fe6821b479372b0ce51064e6da1c650f8003073314a4c1d8fec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Compressible Navier–Stokes equations</topic><topic>Computational efficiency</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Formulations</topic><topic>High-order methods</topic><topic>Interpolation</topic><topic>Lifting-collocation-penalty formulation</topic><topic>Liquid crystal polymers</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Polynomial refinement</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cagnone, J.S.</creatorcontrib><creatorcontrib>Vermeire, B.C.</creatorcontrib><creatorcontrib>Nadarajah, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cagnone, J.S.</au><au>Vermeire, B.C.</au><au>Nadarajah, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A p-adaptive LCP formulation for the compressible Navier–Stokes equations</atitle><jtitle>Journal of computational physics</jtitle><date>2013-01-15</date><risdate>2013</risdate><volume>233</volume><spage>324</spage><epage>338</epage><pages>324-338</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier–Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier–Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2012.08.053</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2013-01, Vol.233, p.324-338
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1283653401
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Approximation
Compressible Navier–Stokes equations
Computational efficiency
Computational techniques
Exact sciences and technology
Fluid flow
Formulations
High-order methods
Interpolation
Lifting-collocation-penalty formulation
Liquid crystal polymers
Mathematical analysis
Mathematical methods in physics
Physics
Polynomial refinement
Scalars
title A p-adaptive LCP formulation for the compressible Navier–Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20p-adaptive%20LCP%20formulation%20for%20the%20compressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Cagnone,%20J.S.&rft.date=2013-01-15&rft.volume=233&rft.spage=324&rft.epage=338&rft.pages=324-338&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2012.08.053&rft_dat=%3Cproquest_cross%3E1283653401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283653401&rft_id=info:pmid/&rft_els_id=S0021999112005396&rfr_iscdi=true