A p-adaptive LCP formulation for the compressible Navier–Stokes equations
This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier–Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polyn...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2013-01, Vol.233, p.324-338 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 338 |
---|---|
container_issue | |
container_start_page | 324 |
container_title | Journal of computational physics |
container_volume | 233 |
creator | Cagnone, J.S. Vermeire, B.C. Nadarajah, S. |
description | This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier–Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier–Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations. |
doi_str_mv | 10.1016/j.jcp.2012.08.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283653401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112005396</els_id><sourcerecordid>1283653401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-c7121cc807a15fe6821b479372b0ce51064e6da1c650f8003073314a4c1d8fec3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxAeyyQWKTMOMkjiNWqOIlKkAC1pY7mQiXtAl2Wokd_8Af8iWkFLFkNbM4947mCHGEkCCgOp0lM-oSCSgT0Ank6ZYYIZQQywLVthgBSIzLssRdsRfCDAB0numRuD2PuthWtuvdiqPJ-CGqWz9fNrZ37WK9R_0LR9TOO88huGnD0Z1dOfZfH5-PffvKIeK35Q8dDsRObZvAh79zXzxfXjyNr-PJ_dXN-HwSUyZVH1OBEok0FBbzmpWWOM2KMi3kFIhzBJWxqiySyqHWACkUaYqZzQgrXTOl--Jk09v59m3JoTdzF4ibxi64XQaDUqcqTzPAAcUNSr4NwXNtOu_m1r8bBLMWZ2ZmEGfW4gxoM4gbMse_9TaQbWpvF-TCX1CqAiRkauDONhwPv66VmECOF8SV80y9qVr3z5VvqEqC1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283653401</pqid></control><display><type>article</type><title>A p-adaptive LCP formulation for the compressible Navier–Stokes equations</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Cagnone, J.S. ; Vermeire, B.C. ; Nadarajah, S.</creator><creatorcontrib>Cagnone, J.S. ; Vermeire, B.C. ; Nadarajah, S.</creatorcontrib><description>This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier–Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier–Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.08.053</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Approximation ; Compressible Navier–Stokes equations ; Computational efficiency ; Computational techniques ; Exact sciences and technology ; Fluid flow ; Formulations ; High-order methods ; Interpolation ; Lifting-collocation-penalty formulation ; Liquid crystal polymers ; Mathematical analysis ; Mathematical methods in physics ; Physics ; Polynomial refinement ; Scalars</subject><ispartof>Journal of computational physics, 2013-01, Vol.233, p.324-338</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-c7121cc807a15fe6821b479372b0ce51064e6da1c650f8003073314a4c1d8fec3</citedby><cites>FETCH-LOGICAL-c426t-c7121cc807a15fe6821b479372b0ce51064e6da1c650f8003073314a4c1d8fec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2012.08.053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26702046$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cagnone, J.S.</creatorcontrib><creatorcontrib>Vermeire, B.C.</creatorcontrib><creatorcontrib>Nadarajah, S.</creatorcontrib><title>A p-adaptive LCP formulation for the compressible Navier–Stokes equations</title><title>Journal of computational physics</title><description>This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier–Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier–Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations.</description><subject>Approximation</subject><subject>Compressible Navier–Stokes equations</subject><subject>Computational efficiency</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Formulations</subject><subject>High-order methods</subject><subject>Interpolation</subject><subject>Lifting-collocation-penalty formulation</subject><subject>Liquid crystal polymers</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Polynomial refinement</subject><subject>Scalars</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxAeyyQWKTMOMkjiNWqOIlKkAC1pY7mQiXtAl2Wokd_8Af8iWkFLFkNbM4947mCHGEkCCgOp0lM-oSCSgT0Ank6ZYYIZQQywLVthgBSIzLssRdsRfCDAB0numRuD2PuthWtuvdiqPJ-CGqWz9fNrZ37WK9R_0LR9TOO88huGnD0Z1dOfZfH5-PffvKIeK35Q8dDsRObZvAh79zXzxfXjyNr-PJ_dXN-HwSUyZVH1OBEok0FBbzmpWWOM2KMi3kFIhzBJWxqiySyqHWACkUaYqZzQgrXTOl--Jk09v59m3JoTdzF4ibxi64XQaDUqcqTzPAAcUNSr4NwXNtOu_m1r8bBLMWZ2ZmEGfW4gxoM4gbMse_9TaQbWpvF-TCX1CqAiRkauDONhwPv66VmECOF8SV80y9qVr3z5VvqEqC1Q</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Cagnone, J.S.</creator><creator>Vermeire, B.C.</creator><creator>Nadarajah, S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130115</creationdate><title>A p-adaptive LCP formulation for the compressible Navier–Stokes equations</title><author>Cagnone, J.S. ; Vermeire, B.C. ; Nadarajah, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-c7121cc807a15fe6821b479372b0ce51064e6da1c650f8003073314a4c1d8fec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Compressible Navier–Stokes equations</topic><topic>Computational efficiency</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Formulations</topic><topic>High-order methods</topic><topic>Interpolation</topic><topic>Lifting-collocation-penalty formulation</topic><topic>Liquid crystal polymers</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Polynomial refinement</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cagnone, J.S.</creatorcontrib><creatorcontrib>Vermeire, B.C.</creatorcontrib><creatorcontrib>Nadarajah, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cagnone, J.S.</au><au>Vermeire, B.C.</au><au>Nadarajah, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A p-adaptive LCP formulation for the compressible Navier–Stokes equations</atitle><jtitle>Journal of computational physics</jtitle><date>2013-01-15</date><risdate>2013</risdate><volume>233</volume><spage>324</spage><epage>338</epage><pages>324-338</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier–Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier–Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2012.08.053</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2013-01, Vol.233, p.324-338 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283653401 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Approximation Compressible Navier–Stokes equations Computational efficiency Computational techniques Exact sciences and technology Fluid flow Formulations High-order methods Interpolation Lifting-collocation-penalty formulation Liquid crystal polymers Mathematical analysis Mathematical methods in physics Physics Polynomial refinement Scalars |
title | A p-adaptive LCP formulation for the compressible Navier–Stokes equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20p-adaptive%20LCP%20formulation%20for%20the%20compressible%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Cagnone,%20J.S.&rft.date=2013-01-15&rft.volume=233&rft.spage=324&rft.epage=338&rft.pages=324-338&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2012.08.053&rft_dat=%3Cproquest_cross%3E1283653401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283653401&rft_id=info:pmid/&rft_els_id=S0021999112005396&rfr_iscdi=true |