Structural Controllability and Observability of Linear Systems Over Finite Fields With Applications to Multi-Agent Systems

We develop a graph-theoretic characterization of controllability and observability of linear systems over finite fields. Specifically, we show that a linear system will be structurally controllable and observable over a finite field if the graph of the system satisfies certain properties, and the si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2013-01, Vol.58 (1), p.60-73
Hauptverfasser: Sundaram, S., Hadjicostis, C. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 60
container_title IEEE transactions on automatic control
container_volume 58
creator Sundaram, S.
Hadjicostis, C. N.
description We develop a graph-theoretic characterization of controllability and observability of linear systems over finite fields. Specifically, we show that a linear system will be structurally controllable and observable over a finite field if the graph of the system satisfies certain properties, and the size of the field is sufficiently large. We also provide graph-theoretic upper bounds on the controllability and observability indices for structured linear systems (over arbitrary fields). We then use our analysis to design nearest-neighbor rules for multi-agent systems where the state of each agent is constrained to lie in a finite set. We view the discrete states of each agent as elements of a finite field, and employ a linear iterative strategy whereby at each time-step, each agent updates its state to be a linear combination (over the finite field) of its own state and the states of its neighbors. Using our results on structural controllability and observability, we show how a set of leader agents can use this strategy to place all agents into any desired state (within the finite set), and how a set of sink agents can recover the set of initial values held by all of the agents.
doi_str_mv 10.1109/TAC.2012.2204155
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283647241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6215022</ieee_id><sourcerecordid>2851337941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-78983ee1a0e6f5a76645914e1522caf48f314f75341ed8175946ce8e1b2323c73</originalsourceid><addsrcrecordid>eNpdkUFrGzEQhUVoIK6be6AXQS-9rKsZSbvaozF1E3DwISk9LvJ6tlVYr1xJa3B-fWXs5NDLPGb43jDDY-wOxAxA1N-e54sZCsAZolCg9RWb5GoK1Cg_sIkQYIoaTXnDPsb4kttSKZiw16cUxjaNwfZ84YcUfN_bjetdOnI7bPl6Eykc3ia-4ys3kA386RgT7SJfHyjwpRtcoizUbyP_5dIfPt_ve9fa5PwQefL8ceyTK-a_aUhv3k_surN9pNuLTtnP5ffnxX2xWv94WMxXRStRpaIytZFEYAWVnbZVWSpdgyLQiK3tlOkkqK7SUgFtDVS6VmVLhmCDEmVbySn7et67D_7vSDE1Oxdbyn8O5MfYABpZqgoVZPTLf-iLH8OQr8uUUlpXlTxR4ky1wccYqGv2we1sODYgmlMYTQ6jOYXRXMLIls9niyOid7xE0AJR_gPLGoV1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1244557731</pqid></control><display><type>article</type><title>Structural Controllability and Observability of Linear Systems Over Finite Fields With Applications to Multi-Agent Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Sundaram, S. ; Hadjicostis, C. N.</creator><creatorcontrib>Sundaram, S. ; Hadjicostis, C. N.</creatorcontrib><description>We develop a graph-theoretic characterization of controllability and observability of linear systems over finite fields. Specifically, we show that a linear system will be structurally controllable and observable over a finite field if the graph of the system satisfies certain properties, and the size of the field is sufficiently large. We also provide graph-theoretic upper bounds on the controllability and observability indices for structured linear systems (over arbitrary fields). We then use our analysis to design nearest-neighbor rules for multi-agent systems where the state of each agent is constrained to lie in a finite set. We view the discrete states of each agent as elements of a finite field, and employ a linear iterative strategy whereby at each time-step, each agent updates its state to be a linear combination (over the finite field) of its own state and the states of its neighbors. Using our results on structural controllability and observability, we show how a set of leader agents can use this strategy to place all agents into any desired state (within the finite set), and how a set of sink agents can recover the set of initial values held by all of the agents.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2012.2204155</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agents (artificial intelligence) ; Algorithms ; Controllability ; Design engineering ; Distributed consensus ; distributed function calculation ; Expert systems ; finite fields ; Graph theory ; linear system theory ; Linear systems ; Mathematical analysis ; multi-agent systems ; Multiagent systems ; Observability ; Polynomials ; Quantization ; quantized control ; Strategy ; structural controllability ; structural observability ; structured system theory ; Studies ; Vegetation</subject><ispartof>IEEE transactions on automatic control, 2013-01, Vol.58 (1), p.60-73</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-78983ee1a0e6f5a76645914e1522caf48f314f75341ed8175946ce8e1b2323c73</citedby><cites>FETCH-LOGICAL-c324t-78983ee1a0e6f5a76645914e1522caf48f314f75341ed8175946ce8e1b2323c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6215022$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6215022$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sundaram, S.</creatorcontrib><creatorcontrib>Hadjicostis, C. N.</creatorcontrib><title>Structural Controllability and Observability of Linear Systems Over Finite Fields With Applications to Multi-Agent Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We develop a graph-theoretic characterization of controllability and observability of linear systems over finite fields. Specifically, we show that a linear system will be structurally controllable and observable over a finite field if the graph of the system satisfies certain properties, and the size of the field is sufficiently large. We also provide graph-theoretic upper bounds on the controllability and observability indices for structured linear systems (over arbitrary fields). We then use our analysis to design nearest-neighbor rules for multi-agent systems where the state of each agent is constrained to lie in a finite set. We view the discrete states of each agent as elements of a finite field, and employ a linear iterative strategy whereby at each time-step, each agent updates its state to be a linear combination (over the finite field) of its own state and the states of its neighbors. Using our results on structural controllability and observability, we show how a set of leader agents can use this strategy to place all agents into any desired state (within the finite set), and how a set of sink agents can recover the set of initial values held by all of the agents.</description><subject>Agents (artificial intelligence)</subject><subject>Algorithms</subject><subject>Controllability</subject><subject>Design engineering</subject><subject>Distributed consensus</subject><subject>distributed function calculation</subject><subject>Expert systems</subject><subject>finite fields</subject><subject>Graph theory</subject><subject>linear system theory</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>multi-agent systems</subject><subject>Multiagent systems</subject><subject>Observability</subject><subject>Polynomials</subject><subject>Quantization</subject><subject>quantized control</subject><subject>Strategy</subject><subject>structural controllability</subject><subject>structural observability</subject><subject>structured system theory</subject><subject>Studies</subject><subject>Vegetation</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFrGzEQhUVoIK6be6AXQS-9rKsZSbvaozF1E3DwISk9LvJ6tlVYr1xJa3B-fWXs5NDLPGb43jDDY-wOxAxA1N-e54sZCsAZolCg9RWb5GoK1Cg_sIkQYIoaTXnDPsb4kttSKZiw16cUxjaNwfZ84YcUfN_bjetdOnI7bPl6Eykc3ia-4ys3kA386RgT7SJfHyjwpRtcoizUbyP_5dIfPt_ve9fa5PwQefL8ceyTK-a_aUhv3k_surN9pNuLTtnP5ffnxX2xWv94WMxXRStRpaIytZFEYAWVnbZVWSpdgyLQiK3tlOkkqK7SUgFtDVS6VmVLhmCDEmVbySn7et67D_7vSDE1Oxdbyn8O5MfYABpZqgoVZPTLf-iLH8OQr8uUUlpXlTxR4ky1wccYqGv2we1sODYgmlMYTQ6jOYXRXMLIls9niyOid7xE0AJR_gPLGoV1</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Sundaram, S.</creator><creator>Hadjicostis, C. N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201301</creationdate><title>Structural Controllability and Observability of Linear Systems Over Finite Fields With Applications to Multi-Agent Systems</title><author>Sundaram, S. ; Hadjicostis, C. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-78983ee1a0e6f5a76645914e1522caf48f314f75341ed8175946ce8e1b2323c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agents (artificial intelligence)</topic><topic>Algorithms</topic><topic>Controllability</topic><topic>Design engineering</topic><topic>Distributed consensus</topic><topic>distributed function calculation</topic><topic>Expert systems</topic><topic>finite fields</topic><topic>Graph theory</topic><topic>linear system theory</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>multi-agent systems</topic><topic>Multiagent systems</topic><topic>Observability</topic><topic>Polynomials</topic><topic>Quantization</topic><topic>quantized control</topic><topic>Strategy</topic><topic>structural controllability</topic><topic>structural observability</topic><topic>structured system theory</topic><topic>Studies</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundaram, S.</creatorcontrib><creatorcontrib>Hadjicostis, C. N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sundaram, S.</au><au>Hadjicostis, C. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Controllability and Observability of Linear Systems Over Finite Fields With Applications to Multi-Agent Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2013-01</date><risdate>2013</risdate><volume>58</volume><issue>1</issue><spage>60</spage><epage>73</epage><pages>60-73</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We develop a graph-theoretic characterization of controllability and observability of linear systems over finite fields. Specifically, we show that a linear system will be structurally controllable and observable over a finite field if the graph of the system satisfies certain properties, and the size of the field is sufficiently large. We also provide graph-theoretic upper bounds on the controllability and observability indices for structured linear systems (over arbitrary fields). We then use our analysis to design nearest-neighbor rules for multi-agent systems where the state of each agent is constrained to lie in a finite set. We view the discrete states of each agent as elements of a finite field, and employ a linear iterative strategy whereby at each time-step, each agent updates its state to be a linear combination (over the finite field) of its own state and the states of its neighbors. Using our results on structural controllability and observability, we show how a set of leader agents can use this strategy to place all agents into any desired state (within the finite set), and how a set of sink agents can recover the set of initial values held by all of the agents.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2012.2204155</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2013-01, Vol.58 (1), p.60-73
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_1283647241
source IEEE Electronic Library (IEL)
subjects Agents (artificial intelligence)
Algorithms
Controllability
Design engineering
Distributed consensus
distributed function calculation
Expert systems
finite fields
Graph theory
linear system theory
Linear systems
Mathematical analysis
multi-agent systems
Multiagent systems
Observability
Polynomials
Quantization
quantized control
Strategy
structural controllability
structural observability
structured system theory
Studies
Vegetation
title Structural Controllability and Observability of Linear Systems Over Finite Fields With Applications to Multi-Agent Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Controllability%20and%20Observability%20of%20Linear%20Systems%20Over%20Finite%20Fields%20With%20Applications%20to%20Multi-Agent%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Sundaram,%20S.&rft.date=2013-01&rft.volume=58&rft.issue=1&rft.spage=60&rft.epage=73&rft.pages=60-73&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2012.2204155&rft_dat=%3Cproquest_RIE%3E2851337941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1244557731&rft_id=info:pmid/&rft_ieee_id=6215022&rfr_iscdi=true