Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization

Previously, we proposed a 2D/3D registration method that uses Powell’s algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiological physics and technology 2013, Vol.6 (1), p.170-179
Hauptverfasser: Ohnishi, Takashi, Suzuki, Masahiko, Kobayashi, Tatsuya, Naomoto, Shinji, Sukegawa, Tomoyuki, Nawata, Atsushi, Haneishi, Hideaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 1
container_start_page 170
container_title Radiological physics and technology
container_volume 6
creator Ohnishi, Takashi
Suzuki, Masahiko
Kobayashi, Tatsuya
Naomoto, Shinji
Sukegawa, Tomoyuki
Nawata, Atsushi
Haneishi, Hideaki
description Previously, we proposed a 2D/3D registration method that uses Powell’s algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell’s algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell’s algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell’s algorithm with the Nelder–Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell’s algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell’s algorithm alone.
doi_str_mv 10.1007/s12194-012-0185-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1282513537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1282513537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349y-957ad82f6de8c80121c41ecf05c1d80fcba6815a9c3d78bd7e58fe08b42d503a3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBCIlsIHcEE-cgn12nHjHFF5SpWQEByR5Th269LExU4kwteTPuiRw2pXs7OjnUHoEsgNEJKNI1DI04QA7UvwpDtCQxATnhCWwvFhZmyAzmJcEjIBSukpGlAGTOQ0H6KPV1-0scH0bszucDBzF5ugGudrbH3AVsUmsSvzvQEqv8W9xc3C4M_aGLz0rm5wG109x4uuCK7Eft24yv1sNc7RiVWraC72fYTeH-7fpk_J7OXxeXo7SzRL8y7JeaZKQe2kNEKL3g7oFIy2hGsoBbG6UBMBXOWalZkoysxwYQ0RRUpLTphiI3S9010H_9Wa2MjKRW1WK1Ub30YJVFAOjLOsp8KOqoOPMRgr18FVKnQSiNykKnepyv4NuUlVdv3N1V6-LSpTHi7-YuwJdEeI_aqemyCXvg11b_kf1V_9hoPP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282513537</pqid></control><display><type>article</type><title>Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ohnishi, Takashi ; Suzuki, Masahiko ; Kobayashi, Tatsuya ; Naomoto, Shinji ; Sukegawa, Tomoyuki ; Nawata, Atsushi ; Haneishi, Hideaki</creator><creatorcontrib>Ohnishi, Takashi ; Suzuki, Masahiko ; Kobayashi, Tatsuya ; Naomoto, Shinji ; Sukegawa, Tomoyuki ; Nawata, Atsushi ; Haneishi, Hideaki</creatorcontrib><description>Previously, we proposed a 2D/3D registration method that uses Powell’s algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell’s algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell’s algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell’s algorithm with the Nelder–Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell’s algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell’s algorithm alone.</description><identifier>ISSN: 1865-0333</identifier><identifier>EISSN: 1865-0341</identifier><identifier>DOI: 10.1007/s12194-012-0185-y</identifier><identifier>PMID: 23138929</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Algorithms ; Imaging ; Imaging, Three-Dimensional - methods ; Knee Joint - diagnostic imaging ; Knee Joint - physiology ; Medical and Radiation Physics ; Medicine ; Medicine &amp; Public Health ; Movement ; Nuclear Medicine ; Radiology ; Radiotherapy ; Tomography, X-Ray Computed - methods</subject><ispartof>Radiological physics and technology, 2013, Vol.6 (1), p.170-179</ispartof><rights>Japanese Society of Radiological Technology and Japan Society of Medical Physics 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349y-957ad82f6de8c80121c41ecf05c1d80fcba6815a9c3d78bd7e58fe08b42d503a3</citedby><cites>FETCH-LOGICAL-c349y-957ad82f6de8c80121c41ecf05c1d80fcba6815a9c3d78bd7e58fe08b42d503a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12194-012-0185-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12194-012-0185-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23138929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohnishi, Takashi</creatorcontrib><creatorcontrib>Suzuki, Masahiko</creatorcontrib><creatorcontrib>Kobayashi, Tatsuya</creatorcontrib><creatorcontrib>Naomoto, Shinji</creatorcontrib><creatorcontrib>Sukegawa, Tomoyuki</creatorcontrib><creatorcontrib>Nawata, Atsushi</creatorcontrib><creatorcontrib>Haneishi, Hideaki</creatorcontrib><title>Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization</title><title>Radiological physics and technology</title><addtitle>Radiol Phys Technol</addtitle><addtitle>Radiol Phys Technol</addtitle><description>Previously, we proposed a 2D/3D registration method that uses Powell’s algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell’s algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell’s algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell’s algorithm with the Nelder–Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell’s algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell’s algorithm alone.</description><subject>Algorithms</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Knee Joint - diagnostic imaging</subject><subject>Knee Joint - physiology</subject><subject>Medical and Radiation Physics</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Movement</subject><subject>Nuclear Medicine</subject><subject>Radiology</subject><subject>Radiotherapy</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1865-0333</issn><issn>1865-0341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UMtOwzAQtBCIlsIHcEE-cgn12nHjHFF5SpWQEByR5Th269LExU4kwteTPuiRw2pXs7OjnUHoEsgNEJKNI1DI04QA7UvwpDtCQxATnhCWwvFhZmyAzmJcEjIBSukpGlAGTOQ0H6KPV1-0scH0bszucDBzF5ugGudrbH3AVsUmsSvzvQEqv8W9xc3C4M_aGLz0rm5wG109x4uuCK7Eft24yv1sNc7RiVWraC72fYTeH-7fpk_J7OXxeXo7SzRL8y7JeaZKQe2kNEKL3g7oFIy2hGsoBbG6UBMBXOWalZkoysxwYQ0RRUpLTphiI3S9010H_9Wa2MjKRW1WK1Ub30YJVFAOjLOsp8KOqoOPMRgr18FVKnQSiNykKnepyv4NuUlVdv3N1V6-LSpTHi7-YuwJdEeI_aqemyCXvg11b_kf1V_9hoPP</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Ohnishi, Takashi</creator><creator>Suzuki, Masahiko</creator><creator>Kobayashi, Tatsuya</creator><creator>Naomoto, Shinji</creator><creator>Sukegawa, Tomoyuki</creator><creator>Nawata, Atsushi</creator><creator>Haneishi, Hideaki</creator><general>Springer Japan</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2013</creationdate><title>Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization</title><author>Ohnishi, Takashi ; Suzuki, Masahiko ; Kobayashi, Tatsuya ; Naomoto, Shinji ; Sukegawa, Tomoyuki ; Nawata, Atsushi ; Haneishi, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349y-957ad82f6de8c80121c41ecf05c1d80fcba6815a9c3d78bd7e58fe08b42d503a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Knee Joint - diagnostic imaging</topic><topic>Knee Joint - physiology</topic><topic>Medical and Radiation Physics</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Movement</topic><topic>Nuclear Medicine</topic><topic>Radiology</topic><topic>Radiotherapy</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohnishi, Takashi</creatorcontrib><creatorcontrib>Suzuki, Masahiko</creatorcontrib><creatorcontrib>Kobayashi, Tatsuya</creatorcontrib><creatorcontrib>Naomoto, Shinji</creatorcontrib><creatorcontrib>Sukegawa, Tomoyuki</creatorcontrib><creatorcontrib>Nawata, Atsushi</creatorcontrib><creatorcontrib>Haneishi, Hideaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiological physics and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohnishi, Takashi</au><au>Suzuki, Masahiko</au><au>Kobayashi, Tatsuya</au><au>Naomoto, Shinji</au><au>Sukegawa, Tomoyuki</au><au>Nawata, Atsushi</au><au>Haneishi, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization</atitle><jtitle>Radiological physics and technology</jtitle><stitle>Radiol Phys Technol</stitle><addtitle>Radiol Phys Technol</addtitle><date>2013</date><risdate>2013</risdate><volume>6</volume><issue>1</issue><spage>170</spage><epage>179</epage><pages>170-179</pages><issn>1865-0333</issn><eissn>1865-0341</eissn><abstract>Previously, we proposed a 2D/3D registration method that uses Powell’s algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell’s algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell’s algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell’s algorithm with the Nelder–Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell’s algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell’s algorithm alone.</abstract><cop>Japan</cop><pub>Springer Japan</pub><pmid>23138929</pmid><doi>10.1007/s12194-012-0185-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1865-0333
ispartof Radiological physics and technology, 2013, Vol.6 (1), p.170-179
issn 1865-0333
1865-0341
language eng
recordid cdi_proquest_miscellaneous_1282513537
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Algorithms
Imaging
Imaging, Three-Dimensional - methods
Knee Joint - diagnostic imaging
Knee Joint - physiology
Medical and Radiation Physics
Medicine
Medicine & Public Health
Movement
Nuclear Medicine
Radiology
Radiotherapy
Tomography, X-Ray Computed - methods
title Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%202D/3D%20registration%20for%20fast-flexion%20motion%20of%20the%20knee%20joint%20using%20hybrid%20optimization&rft.jtitle=Radiological%20physics%20and%20technology&rft.au=Ohnishi,%20Takashi&rft.date=2013&rft.volume=6&rft.issue=1&rft.spage=170&rft.epage=179&rft.pages=170-179&rft.issn=1865-0333&rft.eissn=1865-0341&rft_id=info:doi/10.1007/s12194-012-0185-y&rft_dat=%3Cproquest_cross%3E1282513537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1282513537&rft_id=info:pmid/23138929&rfr_iscdi=true