Effect of Black Wattle (Acacia mearnsii) Extract on Blue-Green Algal Bloom Control and Plankton Structure Optimization: A Field Mesocosm Experiment
A field mesocosm experiment was conducted at the Three Gorges Reservoir to investigate the utility of black wattle extract in controlling blue algal blooms. The mesocosm experiment was divided into two parts: (1) a short-term test to evaluate how black wattle extract inhibits algal blooms in an emer...
Gespeichert in:
Veröffentlicht in: | Water environment research 2012-12, Vol.84 (12), p.2133-2142 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2142 |
---|---|
container_issue | 12 |
container_start_page | 2133 |
container_title | Water environment research |
container_volume | 84 |
creator | Zhou, Lirong Bi, Yonghong Jiang, Lihe Wang, Zhiqiang Chen, Wenqing |
description | A field mesocosm experiment was conducted at the Three Gorges Reservoir to investigate the utility of black wattle extract in controlling blue algal blooms. The mesocosm experiment was divided into two parts: (1) a short-term test to evaluate how black wattle extract inhibits algal blooms in an emergency and (2) a long-term test to evaluate how black wattle extract maintains water quality and prevents algal blooms over a 1-year period. In the short-term test, the results showed that 3 to 4 mg L⁻¹ black wattle extract could reduce algal biomass in 1 week, whereas serious algal blooms occurred in the untreated control mesocosm. More importantly, the long-term test suggested that black wattle extract played a significant role in plankton structure optimization at lower concentrations of 1 to 2 mg L⁻¹. In this test, phytoplankton diversity increased, with the dominant species shifting from cyanobacteria to diatoms and other algae. Meanwhile, as water quality improved through the presence of plant extract treatment, the numbers of smaller zooplankton decreased and larger species increased. Therefore, this investigation founded a novel nature plant agent that not only has good effects on algal bloom control, but also restores the aquatic ecosystem. |
doi_str_mv | 10.2175/106143012X13418552642083 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1282043540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42569447</jstor_id><sourcerecordid>42569447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4493-619a56261278973825c5257f2e9758a0a8792de4ad073f0f15a1cf4ffcfbfaaf3</originalsourceid><addsrcrecordid>eNqN0d1qFDEUB_BBFFurj6AERKgXo_mcZAQv1mVbhUrFD-rdcJpJJNtMsiYZtL6GL2yWXSsIglcJ4fc_OclpGkTwM0qkeE5wRzjDhH4mjBMlBO04xYrdag6JELyVgpHbdV9ZWx07aO7lvMY1QDG_2xxQxjjtuThsfq6sNbqgaNErD_oKXUAp3qDjhQbtAE0GUsjOPUWr7yXBVoYqZ9OeJmMCWvgv4OtBjBNaxlBS9AjCiN55CFel2g8lzbrMyaDzTXGT-wHFxfACLdCJM35Eb02OOuap1t-Y5CYTyv3mjgWfzYP9etR8Oll9XL5uz85P3ywXZ63mvGdtR3oQHe0IlaqXTFGhBRXSUtNLoQCDkj0dDYcRS2axJQKIttxabS8tgGVHzfGu7ibFr7PJZZhc1sbX1k2c80Coqt_FBMeVPv6LruOcQu2uqk4R1ivSV6V2SqeYczJ22NQXQboeCB62gxv-NbgafbS_YL6czHgT_D2pCp7sAWQN3iYI2uU_rpNU8l5V93Lnvjlvrv-7geFi9Z4Stm3k4S6_ziWmmzynous5l-wX3Gu6Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1268139819</pqid></control><display><type>article</type><title>Effect of Black Wattle (Acacia mearnsii) Extract on Blue-Green Algal Bloom Control and Plankton Structure Optimization: A Field Mesocosm Experiment</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Zhou, Lirong ; Bi, Yonghong ; Jiang, Lihe ; Wang, Zhiqiang ; Chen, Wenqing</creator><creatorcontrib>Zhou, Lirong ; Bi, Yonghong ; Jiang, Lihe ; Wang, Zhiqiang ; Chen, Wenqing</creatorcontrib><description>A field mesocosm experiment was conducted at the Three Gorges Reservoir to investigate the utility of black wattle extract in controlling blue algal blooms. The mesocosm experiment was divided into two parts: (1) a short-term test to evaluate how black wattle extract inhibits algal blooms in an emergency and (2) a long-term test to evaluate how black wattle extract maintains water quality and prevents algal blooms over a 1-year period. In the short-term test, the results showed that 3 to 4 mg L⁻¹ black wattle extract could reduce algal biomass in 1 week, whereas serious algal blooms occurred in the untreated control mesocosm. More importantly, the long-term test suggested that black wattle extract played a significant role in plankton structure optimization at lower concentrations of 1 to 2 mg L⁻¹. In this test, phytoplankton diversity increased, with the dominant species shifting from cyanobacteria to diatoms and other algae. Meanwhile, as water quality improved through the presence of plant extract treatment, the numbers of smaller zooplankton decreased and larger species increased. Therefore, this investigation founded a novel nature plant agent that not only has good effects on algal bloom control, but also restores the aquatic ecosystem.</description><identifier>ISSN: 1061-4303</identifier><identifier>EISSN: 1554-7531</identifier><identifier>DOI: 10.2175/106143012X13418552642083</identifier><identifier>PMID: 23342945</identifier><language>eng</language><publisher>Alexandria, VA: Water Environment Federation</publisher><subject>Acacia ; Algae ; algal bloom ; Algal blooms ; algal inhibition ; Applied sciences ; aquatic ecosystem ; Aquatic ecosystems ; Biodegradation, Environmental ; black wattle extract ; Cyanobacteria ; Cyanobacteria - drug effects ; Ecosystem ; Eutrophication - drug effects ; Exact sciences and technology ; Field experiments ; Fresh water ; Phytoplankton ; Plankton ; Plankton - drug effects ; Plant cells ; Plant Extracts - pharmacology ; Plants ; Pollution ; Water Quality ; Wattles ; Zooplankton</subject><ispartof>Water environment research, 2012-12, Vol.84 (12), p.2133-2142</ispartof><rights>2012 WATER ENVIRONMENT FEDERATION</rights><rights>2012 Water Environment Federation</rights><rights>2014 INIST-CNRS</rights><rights>Copyright Water Environment Federation Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4493-619a56261278973825c5257f2e9758a0a8792de4ad073f0f15a1cf4ffcfbfaaf3</citedby><cites>FETCH-LOGICAL-c4493-619a56261278973825c5257f2e9758a0a8792de4ad073f0f15a1cf4ffcfbfaaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42569447$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42569447$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,1418,27926,27927,45576,45577,58019,58252</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26727498$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23342945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Lirong</creatorcontrib><creatorcontrib>Bi, Yonghong</creatorcontrib><creatorcontrib>Jiang, Lihe</creatorcontrib><creatorcontrib>Wang, Zhiqiang</creatorcontrib><creatorcontrib>Chen, Wenqing</creatorcontrib><title>Effect of Black Wattle (Acacia mearnsii) Extract on Blue-Green Algal Bloom Control and Plankton Structure Optimization: A Field Mesocosm Experiment</title><title>Water environment research</title><addtitle>Water Environ Res</addtitle><description>A field mesocosm experiment was conducted at the Three Gorges Reservoir to investigate the utility of black wattle extract in controlling blue algal blooms. The mesocosm experiment was divided into two parts: (1) a short-term test to evaluate how black wattle extract inhibits algal blooms in an emergency and (2) a long-term test to evaluate how black wattle extract maintains water quality and prevents algal blooms over a 1-year period. In the short-term test, the results showed that 3 to 4 mg L⁻¹ black wattle extract could reduce algal biomass in 1 week, whereas serious algal blooms occurred in the untreated control mesocosm. More importantly, the long-term test suggested that black wattle extract played a significant role in plankton structure optimization at lower concentrations of 1 to 2 mg L⁻¹. In this test, phytoplankton diversity increased, with the dominant species shifting from cyanobacteria to diatoms and other algae. Meanwhile, as water quality improved through the presence of plant extract treatment, the numbers of smaller zooplankton decreased and larger species increased. Therefore, this investigation founded a novel nature plant agent that not only has good effects on algal bloom control, but also restores the aquatic ecosystem.</description><subject>Acacia</subject><subject>Algae</subject><subject>algal bloom</subject><subject>Algal blooms</subject><subject>algal inhibition</subject><subject>Applied sciences</subject><subject>aquatic ecosystem</subject><subject>Aquatic ecosystems</subject><subject>Biodegradation, Environmental</subject><subject>black wattle extract</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - drug effects</subject><subject>Ecosystem</subject><subject>Eutrophication - drug effects</subject><subject>Exact sciences and technology</subject><subject>Field experiments</subject><subject>Fresh water</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Plankton - drug effects</subject><subject>Plant cells</subject><subject>Plant Extracts - pharmacology</subject><subject>Plants</subject><subject>Pollution</subject><subject>Water Quality</subject><subject>Wattles</subject><subject>Zooplankton</subject><issn>1061-4303</issn><issn>1554-7531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0d1qFDEUB_BBFFurj6AERKgXo_mcZAQv1mVbhUrFD-rdcJpJJNtMsiYZtL6GL2yWXSsIglcJ4fc_OclpGkTwM0qkeE5wRzjDhH4mjBMlBO04xYrdag6JELyVgpHbdV9ZWx07aO7lvMY1QDG_2xxQxjjtuThsfq6sNbqgaNErD_oKXUAp3qDjhQbtAE0GUsjOPUWr7yXBVoYqZ9OeJmMCWvgv4OtBjBNaxlBS9AjCiN55CFel2g8lzbrMyaDzTXGT-wHFxfACLdCJM35Eb02OOuap1t-Y5CYTyv3mjgWfzYP9etR8Oll9XL5uz85P3ywXZ63mvGdtR3oQHe0IlaqXTFGhBRXSUtNLoQCDkj0dDYcRS2axJQKIttxabS8tgGVHzfGu7ibFr7PJZZhc1sbX1k2c80Coqt_FBMeVPv6LruOcQu2uqk4R1ivSV6V2SqeYczJ22NQXQboeCB62gxv-NbgafbS_YL6czHgT_D2pCp7sAWQN3iYI2uU_rpNU8l5V93Lnvjlvrv-7geFi9Z4Stm3k4S6_ziWmmzynous5l-wX3Gu6Mg</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Zhou, Lirong</creator><creator>Bi, Yonghong</creator><creator>Jiang, Lihe</creator><creator>Wang, Zhiqiang</creator><creator>Chen, Wenqing</creator><general>Water Environment Federation</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201212</creationdate><title>Effect of Black Wattle (Acacia mearnsii) Extract on Blue-Green Algal Bloom Control and Plankton Structure Optimization: A Field Mesocosm Experiment</title><author>Zhou, Lirong ; Bi, Yonghong ; Jiang, Lihe ; Wang, Zhiqiang ; Chen, Wenqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4493-619a56261278973825c5257f2e9758a0a8792de4ad073f0f15a1cf4ffcfbfaaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acacia</topic><topic>Algae</topic><topic>algal bloom</topic><topic>Algal blooms</topic><topic>algal inhibition</topic><topic>Applied sciences</topic><topic>aquatic ecosystem</topic><topic>Aquatic ecosystems</topic><topic>Biodegradation, Environmental</topic><topic>black wattle extract</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - drug effects</topic><topic>Ecosystem</topic><topic>Eutrophication - drug effects</topic><topic>Exact sciences and technology</topic><topic>Field experiments</topic><topic>Fresh water</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Plankton - drug effects</topic><topic>Plant cells</topic><topic>Plant Extracts - pharmacology</topic><topic>Plants</topic><topic>Pollution</topic><topic>Water Quality</topic><topic>Wattles</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Lirong</creatorcontrib><creatorcontrib>Bi, Yonghong</creatorcontrib><creatorcontrib>Jiang, Lihe</creatorcontrib><creatorcontrib>Wang, Zhiqiang</creatorcontrib><creatorcontrib>Chen, Wenqing</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water environment research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Lirong</au><au>Bi, Yonghong</au><au>Jiang, Lihe</au><au>Wang, Zhiqiang</au><au>Chen, Wenqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Black Wattle (Acacia mearnsii) Extract on Blue-Green Algal Bloom Control and Plankton Structure Optimization: A Field Mesocosm Experiment</atitle><jtitle>Water environment research</jtitle><addtitle>Water Environ Res</addtitle><date>2012-12</date><risdate>2012</risdate><volume>84</volume><issue>12</issue><spage>2133</spage><epage>2142</epage><pages>2133-2142</pages><issn>1061-4303</issn><eissn>1554-7531</eissn><abstract>A field mesocosm experiment was conducted at the Three Gorges Reservoir to investigate the utility of black wattle extract in controlling blue algal blooms. The mesocosm experiment was divided into two parts: (1) a short-term test to evaluate how black wattle extract inhibits algal blooms in an emergency and (2) a long-term test to evaluate how black wattle extract maintains water quality and prevents algal blooms over a 1-year period. In the short-term test, the results showed that 3 to 4 mg L⁻¹ black wattle extract could reduce algal biomass in 1 week, whereas serious algal blooms occurred in the untreated control mesocosm. More importantly, the long-term test suggested that black wattle extract played a significant role in plankton structure optimization at lower concentrations of 1 to 2 mg L⁻¹. In this test, phytoplankton diversity increased, with the dominant species shifting from cyanobacteria to diatoms and other algae. Meanwhile, as water quality improved through the presence of plant extract treatment, the numbers of smaller zooplankton decreased and larger species increased. Therefore, this investigation founded a novel nature plant agent that not only has good effects on algal bloom control, but also restores the aquatic ecosystem.</abstract><cop>Alexandria, VA</cop><pub>Water Environment Federation</pub><pmid>23342945</pmid><doi>10.2175/106143012X13418552642083</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4303 |
ispartof | Water environment research, 2012-12, Vol.84 (12), p.2133-2142 |
issn | 1061-4303 1554-7531 |
language | eng |
recordid | cdi_proquest_miscellaneous_1282043540 |
source | MEDLINE; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing |
subjects | Acacia Algae algal bloom Algal blooms algal inhibition Applied sciences aquatic ecosystem Aquatic ecosystems Biodegradation, Environmental black wattle extract Cyanobacteria Cyanobacteria - drug effects Ecosystem Eutrophication - drug effects Exact sciences and technology Field experiments Fresh water Phytoplankton Plankton Plankton - drug effects Plant cells Plant Extracts - pharmacology Plants Pollution Water Quality Wattles Zooplankton |
title | Effect of Black Wattle (Acacia mearnsii) Extract on Blue-Green Algal Bloom Control and Plankton Structure Optimization: A Field Mesocosm Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Black%20Wattle%20(Acacia%20mearnsii)%20Extract%20on%20Blue-Green%20Algal%20Bloom%20Control%20and%20Plankton%20Structure%20Optimization:%20A%20Field%20Mesocosm%20Experiment&rft.jtitle=Water%20environment%20research&rft.au=Zhou,%20Lirong&rft.date=2012-12&rft.volume=84&rft.issue=12&rft.spage=2133&rft.epage=2142&rft.pages=2133-2142&rft.issn=1061-4303&rft.eissn=1554-7531&rft_id=info:doi/10.2175/106143012X13418552642083&rft_dat=%3Cjstor_proqu%3E42569447%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1268139819&rft_id=info:pmid/23342945&rft_jstor_id=42569447&rfr_iscdi=true |