Investigation of ascorbate metabolism during inducement of storage disorders in pear

In pear and apple, depletion of ascorbate has previously been associated with development of stress‐related flesh browning. This disorder occurs in intact fruit and differs from browning associated with tissue maceration and processing. We investigated changes in ascorbate content, ascorbate peroxid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2013-02, Vol.147 (2), p.121-134
Hauptverfasser: Cascia, Giuseppe, Bulley, Sean M., Punter, Matthew, Bowen, Judith, Rassam, Maysoon, Schotsmans, Wendy C., Larrigaudière, Christian, Johnston, Jason W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 2
container_start_page 121
container_title Physiologia plantarum
container_volume 147
creator Cascia, Giuseppe
Bulley, Sean M.
Punter, Matthew
Bowen, Judith
Rassam, Maysoon
Schotsmans, Wendy C.
Larrigaudière, Christian
Johnston, Jason W.
description In pear and apple, depletion of ascorbate has previously been associated with development of stress‐related flesh browning. This disorder occurs in intact fruit and differs from browning associated with tissue maceration and processing. We investigated changes in ascorbate content, ascorbate peroxidase (APX) activities and gene expression of l‐galactose pathway genes, ascorbate recycling genes and APXs from harvest to 30 days storage for three pear varieties [‘Williams Bon Chretien’ (WBC), ‘Doyenne du Comice’ and ‘Beurre Bosc’]. The pears were stored at 0.5°C in air or controlled atmosphere (CA, 2 kPa O2 and 5 kPa CO2). Storage in CA caused significant amounts of storage disorders in WBC only. Ascorbate content generally declined after harvest, although a transient increase in ascorbate in the form of dehydroascorbate (DHA) between harvest and 3 days was observed in CA stored WBC, possibly due to low at‐harvest monodehydroascorbate reductase and CA‐decreased dehydroascorbate reductase expression. Quantitative polymerase chain reaction indicated that all cultivars responded to CA storage by increasing transcripts for APXs, and surprisingly the pre‐l‐galactose pathway gene GDP‐mannose pyrophosphorylase, of which the product GDP mannose, is utilized either for cell wall polysaccharides, protein N‐glycosylation or ascorbate production. Overall, the small differences in ascorbate we observed suggest how ascorbate is utilized, rather than ascorbate content, determines the potential to develop internal browning. Moreover, a transitory increase in DHA postharvest may indicate that fruits are at risk of developing the disorder.
doi_str_mv 10.1111/j.1399-3054.2012.01641.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273810069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871417801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4651-4fdde0ffc1ea3d1b9cc8faca73d276883ec5f3c7d19b182ef95f352eaf82b4883</originalsourceid><addsrcrecordid>eNqNkc1v0zAYhy0EYmXwL6BICIlLgj_yYR84sGmMaRXsUMrRcuzXlUsSFzsZ3X-PQ7siccIX23qfn_36MUIZwQVJ4_22IEyInOGqLCgmtMCkLkmxf4IWp8JTtMCYkVww0pyhFzFucaJqQp-jM0qrmjd1s0Crm-Ee4ug2anR-yLzNVNQ-tGqErIdRtb5zsc_MFNywydxgJg09DONMxtEHtYHMuOiDgRBTPduBCi_RM6u6CK-O8zn69ulqdfk5X369vrn8uMx1WVckL60xgK3VBBQzpBVac6u0apihTc05A11ZphtDREs4BSvStqKgLKdtmern6N3h3F3wP6f0DNm7qKHr1AB-ipLQhnGCcS0S-uYfdOunMKTuZooIKipeJYofKB18jAGs3AXXq_AgCZazebmVs2A5C5azefnHvNyn6OvjBVPbgzkFH1Un4O0RSIZVZ4MatIt_uZqXNP1V4j4cuF-ug4f_bkDe3S3nVcrnh7yLI-xPeRV-yNRFU8nvX67l6vZCkPX6Qq7Zbz8frtU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1271929585</pqid></control><display><type>article</type><title>Investigation of ascorbate metabolism during inducement of storage disorders in pear</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Cascia, Giuseppe ; Bulley, Sean M. ; Punter, Matthew ; Bowen, Judith ; Rassam, Maysoon ; Schotsmans, Wendy C. ; Larrigaudière, Christian ; Johnston, Jason W.</creator><creatorcontrib>Cascia, Giuseppe ; Bulley, Sean M. ; Punter, Matthew ; Bowen, Judith ; Rassam, Maysoon ; Schotsmans, Wendy C. ; Larrigaudière, Christian ; Johnston, Jason W.</creatorcontrib><description>In pear and apple, depletion of ascorbate has previously been associated with development of stress‐related flesh browning. This disorder occurs in intact fruit and differs from browning associated with tissue maceration and processing. We investigated changes in ascorbate content, ascorbate peroxidase (APX) activities and gene expression of l‐galactose pathway genes, ascorbate recycling genes and APXs from harvest to 30 days storage for three pear varieties [‘Williams Bon Chretien’ (WBC), ‘Doyenne du Comice’ and ‘Beurre Bosc’]. The pears were stored at 0.5°C in air or controlled atmosphere (CA, 2 kPa O2 and 5 kPa CO2). Storage in CA caused significant amounts of storage disorders in WBC only. Ascorbate content generally declined after harvest, although a transient increase in ascorbate in the form of dehydroascorbate (DHA) between harvest and 3 days was observed in CA stored WBC, possibly due to low at‐harvest monodehydroascorbate reductase and CA‐decreased dehydroascorbate reductase expression. Quantitative polymerase chain reaction indicated that all cultivars responded to CA storage by increasing transcripts for APXs, and surprisingly the pre‐l‐galactose pathway gene GDP‐mannose pyrophosphorylase, of which the product GDP mannose, is utilized either for cell wall polysaccharides, protein N‐glycosylation or ascorbate production. Overall, the small differences in ascorbate we observed suggest how ascorbate is utilized, rather than ascorbate content, determines the potential to develop internal browning. Moreover, a transitory increase in DHA postharvest may indicate that fruits are at risk of developing the disorder.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/j.1399-3054.2012.01641.x</identifier><identifier>PMID: 22568767</identifier><identifier>CODEN: PHPLAI</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Air ; Ascorbate Oxidase - genetics ; Ascorbate Oxidase - metabolism ; Ascorbic Acid - analysis ; Ascorbic Acid - metabolism ; Biological and medical sciences ; Cold Temperature ; Food Storage ; Fruit - enzymology ; Fruit - genetics ; Fruit - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Pyrus - enzymology ; Pyrus - genetics ; Pyrus - metabolism ; Transcriptome</subject><ispartof>Physiologia plantarum, 2013-02, Vol.147 (2), p.121-134</ispartof><rights>Copyright © Physiologia Plantarum 2012</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © Physiologia Plantarum 2012.</rights><rights>Copyright © Physiologia Plantarum 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4651-4fdde0ffc1ea3d1b9cc8faca73d276883ec5f3c7d19b182ef95f352eaf82b4883</citedby><cites>FETCH-LOGICAL-c4651-4fdde0ffc1ea3d1b9cc8faca73d276883ec5f3c7d19b182ef95f352eaf82b4883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1399-3054.2012.01641.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1399-3054.2012.01641.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26842931$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22568767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cascia, Giuseppe</creatorcontrib><creatorcontrib>Bulley, Sean M.</creatorcontrib><creatorcontrib>Punter, Matthew</creatorcontrib><creatorcontrib>Bowen, Judith</creatorcontrib><creatorcontrib>Rassam, Maysoon</creatorcontrib><creatorcontrib>Schotsmans, Wendy C.</creatorcontrib><creatorcontrib>Larrigaudière, Christian</creatorcontrib><creatorcontrib>Johnston, Jason W.</creatorcontrib><title>Investigation of ascorbate metabolism during inducement of storage disorders in pear</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>In pear and apple, depletion of ascorbate has previously been associated with development of stress‐related flesh browning. This disorder occurs in intact fruit and differs from browning associated with tissue maceration and processing. We investigated changes in ascorbate content, ascorbate peroxidase (APX) activities and gene expression of l‐galactose pathway genes, ascorbate recycling genes and APXs from harvest to 30 days storage for three pear varieties [‘Williams Bon Chretien’ (WBC), ‘Doyenne du Comice’ and ‘Beurre Bosc’]. The pears were stored at 0.5°C in air or controlled atmosphere (CA, 2 kPa O2 and 5 kPa CO2). Storage in CA caused significant amounts of storage disorders in WBC only. Ascorbate content generally declined after harvest, although a transient increase in ascorbate in the form of dehydroascorbate (DHA) between harvest and 3 days was observed in CA stored WBC, possibly due to low at‐harvest monodehydroascorbate reductase and CA‐decreased dehydroascorbate reductase expression. Quantitative polymerase chain reaction indicated that all cultivars responded to CA storage by increasing transcripts for APXs, and surprisingly the pre‐l‐galactose pathway gene GDP‐mannose pyrophosphorylase, of which the product GDP mannose, is utilized either for cell wall polysaccharides, protein N‐glycosylation or ascorbate production. Overall, the small differences in ascorbate we observed suggest how ascorbate is utilized, rather than ascorbate content, determines the potential to develop internal browning. Moreover, a transitory increase in DHA postharvest may indicate that fruits are at risk of developing the disorder.</description><subject>Air</subject><subject>Ascorbate Oxidase - genetics</subject><subject>Ascorbate Oxidase - metabolism</subject><subject>Ascorbic Acid - analysis</subject><subject>Ascorbic Acid - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cold Temperature</subject><subject>Food Storage</subject><subject>Fruit - enzymology</subject><subject>Fruit - genetics</subject><subject>Fruit - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Pyrus - enzymology</subject><subject>Pyrus - genetics</subject><subject>Pyrus - metabolism</subject><subject>Transcriptome</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v0zAYhy0EYmXwL6BICIlLgj_yYR84sGmMaRXsUMrRcuzXlUsSFzsZ3X-PQ7siccIX23qfn_36MUIZwQVJ4_22IEyInOGqLCgmtMCkLkmxf4IWp8JTtMCYkVww0pyhFzFucaJqQp-jM0qrmjd1s0Crm-Ee4ug2anR-yLzNVNQ-tGqErIdRtb5zsc_MFNywydxgJg09DONMxtEHtYHMuOiDgRBTPduBCi_RM6u6CK-O8zn69ulqdfk5X369vrn8uMx1WVckL60xgK3VBBQzpBVac6u0apihTc05A11ZphtDREs4BSvStqKgLKdtmern6N3h3F3wP6f0DNm7qKHr1AB-ipLQhnGCcS0S-uYfdOunMKTuZooIKipeJYofKB18jAGs3AXXq_AgCZazebmVs2A5C5azefnHvNyn6OvjBVPbgzkFH1Un4O0RSIZVZ4MatIt_uZqXNP1V4j4cuF-ug4f_bkDe3S3nVcrnh7yLI-xPeRV-yNRFU8nvX67l6vZCkPX6Qq7Zbz8frtU</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Cascia, Giuseppe</creator><creator>Bulley, Sean M.</creator><creator>Punter, Matthew</creator><creator>Bowen, Judith</creator><creator>Rassam, Maysoon</creator><creator>Schotsmans, Wendy C.</creator><creator>Larrigaudière, Christian</creator><creator>Johnston, Jason W.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201302</creationdate><title>Investigation of ascorbate metabolism during inducement of storage disorders in pear</title><author>Cascia, Giuseppe ; Bulley, Sean M. ; Punter, Matthew ; Bowen, Judith ; Rassam, Maysoon ; Schotsmans, Wendy C. ; Larrigaudière, Christian ; Johnston, Jason W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4651-4fdde0ffc1ea3d1b9cc8faca73d276883ec5f3c7d19b182ef95f352eaf82b4883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Air</topic><topic>Ascorbate Oxidase - genetics</topic><topic>Ascorbate Oxidase - metabolism</topic><topic>Ascorbic Acid - analysis</topic><topic>Ascorbic Acid - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cold Temperature</topic><topic>Food Storage</topic><topic>Fruit - enzymology</topic><topic>Fruit - genetics</topic><topic>Fruit - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Pyrus - enzymology</topic><topic>Pyrus - genetics</topic><topic>Pyrus - metabolism</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cascia, Giuseppe</creatorcontrib><creatorcontrib>Bulley, Sean M.</creatorcontrib><creatorcontrib>Punter, Matthew</creatorcontrib><creatorcontrib>Bowen, Judith</creatorcontrib><creatorcontrib>Rassam, Maysoon</creatorcontrib><creatorcontrib>Schotsmans, Wendy C.</creatorcontrib><creatorcontrib>Larrigaudière, Christian</creatorcontrib><creatorcontrib>Johnston, Jason W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cascia, Giuseppe</au><au>Bulley, Sean M.</au><au>Punter, Matthew</au><au>Bowen, Judith</au><au>Rassam, Maysoon</au><au>Schotsmans, Wendy C.</au><au>Larrigaudière, Christian</au><au>Johnston, Jason W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of ascorbate metabolism during inducement of storage disorders in pear</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2013-02</date><risdate>2013</risdate><volume>147</volume><issue>2</issue><spage>121</spage><epage>134</epage><pages>121-134</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><coden>PHPLAI</coden><abstract>In pear and apple, depletion of ascorbate has previously been associated with development of stress‐related flesh browning. This disorder occurs in intact fruit and differs from browning associated with tissue maceration and processing. We investigated changes in ascorbate content, ascorbate peroxidase (APX) activities and gene expression of l‐galactose pathway genes, ascorbate recycling genes and APXs from harvest to 30 days storage for three pear varieties [‘Williams Bon Chretien’ (WBC), ‘Doyenne du Comice’ and ‘Beurre Bosc’]. The pears were stored at 0.5°C in air or controlled atmosphere (CA, 2 kPa O2 and 5 kPa CO2). Storage in CA caused significant amounts of storage disorders in WBC only. Ascorbate content generally declined after harvest, although a transient increase in ascorbate in the form of dehydroascorbate (DHA) between harvest and 3 days was observed in CA stored WBC, possibly due to low at‐harvest monodehydroascorbate reductase and CA‐decreased dehydroascorbate reductase expression. Quantitative polymerase chain reaction indicated that all cultivars responded to CA storage by increasing transcripts for APXs, and surprisingly the pre‐l‐galactose pathway gene GDP‐mannose pyrophosphorylase, of which the product GDP mannose, is utilized either for cell wall polysaccharides, protein N‐glycosylation or ascorbate production. Overall, the small differences in ascorbate we observed suggest how ascorbate is utilized, rather than ascorbate content, determines the potential to develop internal browning. Moreover, a transitory increase in DHA postharvest may indicate that fruits are at risk of developing the disorder.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22568767</pmid><doi>10.1111/j.1399-3054.2012.01641.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2013-02, Vol.147 (2), p.121-134
issn 0031-9317
1399-3054
language eng
recordid cdi_proquest_miscellaneous_1273810069
source MEDLINE; Access via Wiley Online Library
subjects Air
Ascorbate Oxidase - genetics
Ascorbate Oxidase - metabolism
Ascorbic Acid - analysis
Ascorbic Acid - metabolism
Biological and medical sciences
Cold Temperature
Food Storage
Fruit - enzymology
Fruit - genetics
Fruit - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Oxidoreductases - genetics
Oxidoreductases - metabolism
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Pyrus - enzymology
Pyrus - genetics
Pyrus - metabolism
Transcriptome
title Investigation of ascorbate metabolism during inducement of storage disorders in pear
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20ascorbate%20metabolism%20during%20inducement%20of%20storage%20disorders%20in%20pear&rft.jtitle=Physiologia%20plantarum&rft.au=Cascia,%20Giuseppe&rft.date=2013-02&rft.volume=147&rft.issue=2&rft.spage=121&rft.epage=134&rft.pages=121-134&rft.issn=0031-9317&rft.eissn=1399-3054&rft.coden=PHPLAI&rft_id=info:doi/10.1111/j.1399-3054.2012.01641.x&rft_dat=%3Cproquest_cross%3E2871417801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1271929585&rft_id=info:pmid/22568767&rfr_iscdi=true