High SNP density in the blacklegged tick, Ixodes scapularis, the principal vector of Lyme disease spirochetes

Single-nucleotide polymorphisms (SNPs) are the most widespread type of sequence variation in genomes. SNP density and distribution varies among different organisms and genes. Here, we report the first estimates of SNP distribution and density in the genome of the blacklegged tick (Ixodes scapularis)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ticks and tick-borne diseases 2013-02, Vol.4 (1-2), p.63-71
Hauptverfasser: Van Zee, Janice, Black, William C., IV, Levin, Michael, Goddard, Jerome, Smith, Joshua, Piesman, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue 1-2
container_start_page 63
container_title Ticks and tick-borne diseases
container_volume 4
creator Van Zee, Janice
Black, William C., IV
Levin, Michael
Goddard, Jerome
Smith, Joshua
Piesman, Joseph
description Single-nucleotide polymorphisms (SNPs) are the most widespread type of sequence variation in genomes. SNP density and distribution varies among different organisms and genes. Here, we report the first estimates of SNP distribution and density in the genome of the blacklegged tick (Ixodes scapularis), an important vector of the pathogens causing Lyme disease, human granulocytic anaplasmosis and human babesiosis in North America. We sampled 10 individuals from each of 4 collections from New Jersey, Virginia, Georgia, and Mississippi and analyzed the sequences of 9 nuclear genes and the mitochondrial 16S gene. SNPs are extremely abundant (one SNP per every 14 bases). This is the second highest density so far reported in any eukaryotic organism. Population genetic analyses based either on haplotype frequencies or the 372 SNPs in these 9 genes showed that the 40 ticks formed 3 genetic groups. In agreement with earlier population genetic studies, northern ticks from New Jersey and Virginia formed a homogeneous group with low genetic diversity, whereas southern ticks from Georgia and Mississippi consisted of 2 separate groups, each with high genetic diversity.
doi_str_mv 10.1016/j.ttbdis.2012.07.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273786013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273786013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-ab9fae1012ee791c75b41616194652b6409a23b041ac77db58ebfa246becf78e3</originalsourceid><addsrcrecordid>eNo9kE1PwyAYx4nRqJn7BkY5etgqby3t0Rh1SxY1URNvBOjTjdmutTDjvr3MTeEAh9_z8v8hdE5JQgnNrpdJCKZ0PmGEsoTIhJD0AJ3SXMpxkRF--PdPi_cTNPR-SeLhVOSSHaMTxhkteCZOUTNx8wV-eXzGJay8CxvsVjgsAJta248a5nMocXD2Y4Sn320JHnuru3Wte-dHv2DXu5V1na7xF9jQ9rit8GzTAI7rgfaAfef61i4ggD9DR5WuPQz37wC93d-93k7Gs6eH6e3NbGw5p2GsTVFpiEEZgCyolakRNIu3EFnKTCZIoRk3RFBtpSxNmoOpNBOZAVvJHPgAXe36dn37uQYfVOO8hbrWK2jXXlEmucwzQnlExQ61fet9D5WKgRrdbxQlautaLdXOtdq6VkSq6DqWXewnrE0D5X_Rn9kIXO6ASrdKz6Mu9fYSO6SEUEFYQfkP6tOGIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273786013</pqid></control><display><type>article</type><title>High SNP density in the blacklegged tick, Ixodes scapularis, the principal vector of Lyme disease spirochetes</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Van Zee, Janice ; Black, William C., IV ; Levin, Michael ; Goddard, Jerome ; Smith, Joshua ; Piesman, Joseph</creator><creatorcontrib>Van Zee, Janice ; Black, William C., IV ; Levin, Michael ; Goddard, Jerome ; Smith, Joshua ; Piesman, Joseph</creatorcontrib><description>Single-nucleotide polymorphisms (SNPs) are the most widespread type of sequence variation in genomes. SNP density and distribution varies among different organisms and genes. Here, we report the first estimates of SNP distribution and density in the genome of the blacklegged tick (Ixodes scapularis), an important vector of the pathogens causing Lyme disease, human granulocytic anaplasmosis and human babesiosis in North America. We sampled 10 individuals from each of 4 collections from New Jersey, Virginia, Georgia, and Mississippi and analyzed the sequences of 9 nuclear genes and the mitochondrial 16S gene. SNPs are extremely abundant (one SNP per every 14 bases). This is the second highest density so far reported in any eukaryotic organism. Population genetic analyses based either on haplotype frequencies or the 372 SNPs in these 9 genes showed that the 40 ticks formed 3 genetic groups. In agreement with earlier population genetic studies, northern ticks from New Jersey and Virginia formed a homogeneous group with low genetic diversity, whereas southern ticks from Georgia and Mississippi consisted of 2 separate groups, each with high genetic diversity.</description><identifier>ISSN: 1877-959X</identifier><identifier>EISSN: 1877-9603</identifier><identifier>DOI: 10.1016/j.ttbdis.2012.07.005</identifier><identifier>PMID: 23219364</identifier><language>eng</language><publisher>Netherlands: Elsevier GmbH</publisher><subject>anaplasmosis ; Animals ; Arachnid Vectors - genetics ; babesiosis ; Borrelia burgdorferi group ; genes ; Genetic Markers ; genetic techniques and protocols ; genetic variation ; Haplotypes ; Humans ; Ixodes - genetics ; Ixodes scapularis ; Lyme disease ; Lyme Disease - epidemiology ; Lyme Disease - microbiology ; Lyme Disease - transmission ; pathogens ; Phylogeny ; Polymorphism, Single Nucleotide ; single nucleotide polymorphism ; ticks ; United States - epidemiology</subject><ispartof>Ticks and tick-borne diseases, 2013-02, Vol.4 (1-2), p.63-71</ispartof><rights>Copyright © 2012 Elsevier GmbH. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-ab9fae1012ee791c75b41616194652b6409a23b041ac77db58ebfa246becf78e3</citedby><cites>FETCH-LOGICAL-c331t-ab9fae1012ee791c75b41616194652b6409a23b041ac77db58ebfa246becf78e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23219364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Zee, Janice</creatorcontrib><creatorcontrib>Black, William C., IV</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Goddard, Jerome</creatorcontrib><creatorcontrib>Smith, Joshua</creatorcontrib><creatorcontrib>Piesman, Joseph</creatorcontrib><title>High SNP density in the blacklegged tick, Ixodes scapularis, the principal vector of Lyme disease spirochetes</title><title>Ticks and tick-borne diseases</title><addtitle>Ticks Tick Borne Dis</addtitle><description>Single-nucleotide polymorphisms (SNPs) are the most widespread type of sequence variation in genomes. SNP density and distribution varies among different organisms and genes. Here, we report the first estimates of SNP distribution and density in the genome of the blacklegged tick (Ixodes scapularis), an important vector of the pathogens causing Lyme disease, human granulocytic anaplasmosis and human babesiosis in North America. We sampled 10 individuals from each of 4 collections from New Jersey, Virginia, Georgia, and Mississippi and analyzed the sequences of 9 nuclear genes and the mitochondrial 16S gene. SNPs are extremely abundant (one SNP per every 14 bases). This is the second highest density so far reported in any eukaryotic organism. Population genetic analyses based either on haplotype frequencies or the 372 SNPs in these 9 genes showed that the 40 ticks formed 3 genetic groups. In agreement with earlier population genetic studies, northern ticks from New Jersey and Virginia formed a homogeneous group with low genetic diversity, whereas southern ticks from Georgia and Mississippi consisted of 2 separate groups, each with high genetic diversity.</description><subject>anaplasmosis</subject><subject>Animals</subject><subject>Arachnid Vectors - genetics</subject><subject>babesiosis</subject><subject>Borrelia burgdorferi group</subject><subject>genes</subject><subject>Genetic Markers</subject><subject>genetic techniques and protocols</subject><subject>genetic variation</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Ixodes - genetics</subject><subject>Ixodes scapularis</subject><subject>Lyme disease</subject><subject>Lyme Disease - epidemiology</subject><subject>Lyme Disease - microbiology</subject><subject>Lyme Disease - transmission</subject><subject>pathogens</subject><subject>Phylogeny</subject><subject>Polymorphism, Single Nucleotide</subject><subject>single nucleotide polymorphism</subject><subject>ticks</subject><subject>United States - epidemiology</subject><issn>1877-959X</issn><issn>1877-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1PwyAYx4nRqJn7BkY5etgqby3t0Rh1SxY1URNvBOjTjdmutTDjvr3MTeEAh9_z8v8hdE5JQgnNrpdJCKZ0PmGEsoTIhJD0AJ3SXMpxkRF--PdPi_cTNPR-SeLhVOSSHaMTxhkteCZOUTNx8wV-eXzGJay8CxvsVjgsAJta248a5nMocXD2Y4Sn320JHnuru3Wte-dHv2DXu5V1na7xF9jQ9rit8GzTAI7rgfaAfef61i4ggD9DR5WuPQz37wC93d-93k7Gs6eH6e3NbGw5p2GsTVFpiEEZgCyolakRNIu3EFnKTCZIoRk3RFBtpSxNmoOpNBOZAVvJHPgAXe36dn37uQYfVOO8hbrWK2jXXlEmucwzQnlExQ61fet9D5WKgRrdbxQlautaLdXOtdq6VkSq6DqWXewnrE0D5X_Rn9kIXO6ASrdKz6Mu9fYSO6SEUEFYQfkP6tOGIA</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Van Zee, Janice</creator><creator>Black, William C., IV</creator><creator>Levin, Michael</creator><creator>Goddard, Jerome</creator><creator>Smith, Joshua</creator><creator>Piesman, Joseph</creator><general>Elsevier GmbH</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201302</creationdate><title>High SNP density in the blacklegged tick, Ixodes scapularis, the principal vector of Lyme disease spirochetes</title><author>Van Zee, Janice ; Black, William C., IV ; Levin, Michael ; Goddard, Jerome ; Smith, Joshua ; Piesman, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-ab9fae1012ee791c75b41616194652b6409a23b041ac77db58ebfa246becf78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>anaplasmosis</topic><topic>Animals</topic><topic>Arachnid Vectors - genetics</topic><topic>babesiosis</topic><topic>Borrelia burgdorferi group</topic><topic>genes</topic><topic>Genetic Markers</topic><topic>genetic techniques and protocols</topic><topic>genetic variation</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Ixodes - genetics</topic><topic>Ixodes scapularis</topic><topic>Lyme disease</topic><topic>Lyme Disease - epidemiology</topic><topic>Lyme Disease - microbiology</topic><topic>Lyme Disease - transmission</topic><topic>pathogens</topic><topic>Phylogeny</topic><topic>Polymorphism, Single Nucleotide</topic><topic>single nucleotide polymorphism</topic><topic>ticks</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Zee, Janice</creatorcontrib><creatorcontrib>Black, William C., IV</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Goddard, Jerome</creatorcontrib><creatorcontrib>Smith, Joshua</creatorcontrib><creatorcontrib>Piesman, Joseph</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ticks and tick-borne diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Zee, Janice</au><au>Black, William C., IV</au><au>Levin, Michael</au><au>Goddard, Jerome</au><au>Smith, Joshua</au><au>Piesman, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High SNP density in the blacklegged tick, Ixodes scapularis, the principal vector of Lyme disease spirochetes</atitle><jtitle>Ticks and tick-borne diseases</jtitle><addtitle>Ticks Tick Borne Dis</addtitle><date>2013-02</date><risdate>2013</risdate><volume>4</volume><issue>1-2</issue><spage>63</spage><epage>71</epage><pages>63-71</pages><issn>1877-959X</issn><eissn>1877-9603</eissn><abstract>Single-nucleotide polymorphisms (SNPs) are the most widespread type of sequence variation in genomes. SNP density and distribution varies among different organisms and genes. Here, we report the first estimates of SNP distribution and density in the genome of the blacklegged tick (Ixodes scapularis), an important vector of the pathogens causing Lyme disease, human granulocytic anaplasmosis and human babesiosis in North America. We sampled 10 individuals from each of 4 collections from New Jersey, Virginia, Georgia, and Mississippi and analyzed the sequences of 9 nuclear genes and the mitochondrial 16S gene. SNPs are extremely abundant (one SNP per every 14 bases). This is the second highest density so far reported in any eukaryotic organism. Population genetic analyses based either on haplotype frequencies or the 372 SNPs in these 9 genes showed that the 40 ticks formed 3 genetic groups. In agreement with earlier population genetic studies, northern ticks from New Jersey and Virginia formed a homogeneous group with low genetic diversity, whereas southern ticks from Georgia and Mississippi consisted of 2 separate groups, each with high genetic diversity.</abstract><cop>Netherlands</cop><pub>Elsevier GmbH</pub><pmid>23219364</pmid><doi>10.1016/j.ttbdis.2012.07.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1877-959X
ispartof Ticks and tick-borne diseases, 2013-02, Vol.4 (1-2), p.63-71
issn 1877-959X
1877-9603
language eng
recordid cdi_proquest_miscellaneous_1273786013
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects anaplasmosis
Animals
Arachnid Vectors - genetics
babesiosis
Borrelia burgdorferi group
genes
Genetic Markers
genetic techniques and protocols
genetic variation
Haplotypes
Humans
Ixodes - genetics
Ixodes scapularis
Lyme disease
Lyme Disease - epidemiology
Lyme Disease - microbiology
Lyme Disease - transmission
pathogens
Phylogeny
Polymorphism, Single Nucleotide
single nucleotide polymorphism
ticks
United States - epidemiology
title High SNP density in the blacklegged tick, Ixodes scapularis, the principal vector of Lyme disease spirochetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20SNP%20density%20in%20the%20blacklegged%20tick,%20Ixodes%20scapularis,%20the%20principal%20vector%20of%20Lyme%20disease%20spirochetes&rft.jtitle=Ticks%20and%20tick-borne%20diseases&rft.au=Van%20Zee,%20Janice&rft.date=2013-02&rft.volume=4&rft.issue=1-2&rft.spage=63&rft.epage=71&rft.pages=63-71&rft.issn=1877-959X&rft.eissn=1877-9603&rft_id=info:doi/10.1016/j.ttbdis.2012.07.005&rft_dat=%3Cproquest_cross%3E1273786013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273786013&rft_id=info:pmid/23219364&rfr_iscdi=true