Observations of ubiquitous compressive waves in the Sun’s chromosphere

The details of the mechanism(s) responsible for the observed heating and dynamics of the solar atmosphere still remain a mystery. Magnetohydrodynamic waves are thought to have a vital role in this process. Although it has been shown that incompressible waves are ubiquitous in off-limb solar atmosphe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2012-12, Vol.3 (1), p.1315-1315, Article 1315
Hauptverfasser: Morton, Richard J., Verth, Gary, Jess, David B., Kuridze, David, Ruderman, Michael S., Mathioudakis, Mihalis, Erdélyi, Robertus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The details of the mechanism(s) responsible for the observed heating and dynamics of the solar atmosphere still remain a mystery. Magnetohydrodynamic waves are thought to have a vital role in this process. Although it has been shown that incompressible waves are ubiquitous in off-limb solar atmospheric observations, their energy cannot be readily dissipated. Here we provide, for the first time, on-disk observation and identification of concurrent magnetohydrodynamic wave modes, both compressible and incompressible, in the solar chromosphere. The observed ubiquity and estimated energy flux associated with the detected magnetohydrodynamic waves suggest the chromosphere is a vast reservoir of wave energy with the potential to meet chromospheric and coronal heating requirements. We are also able to propose an upper bound on the flux of the observed wave energy that is able to reach the corona based on observational constraints, which has important implications for the suggested mechanism(s) for quiescent coronal heating. A full understanding of the heating and dynamics of the Sun's atmosphere remains elusive, but magnetohydrodynamic waves are believed to be crucial. Using observations from the ROSA imager, this study finds compressive waves in the solar chromosphere, which may provide the energy needed for coronal heating.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms2324