Is a single bioelectrical impedance equation valid for children of wide ranges of age, pubertal status and nutritional status? Evidence from the 4-component model

Background/Objectives: Bioelectrical impedance analysis (BIA) is widely used to predict body composition in paediatric research and clinical practice. Many equations have been published, but provide inconsistent predictions. Aims: To test whether a single equation for lean mass (LM) estimation from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of clinical nutrition 2013-01, Vol.67 (Suppl 1), p.S34-S39
Hauptverfasser: Montagnese, C, Williams, J E, Haroun, D, Siervo, M, Fewtrell, M S, Wells, J C K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S39
container_issue Suppl 1
container_start_page S34
container_title European journal of clinical nutrition
container_volume 67
creator Montagnese, C
Williams, J E
Haroun, D
Siervo, M
Fewtrell, M S
Wells, J C K
description Background/Objectives: Bioelectrical impedance analysis (BIA) is widely used to predict body composition in paediatric research and clinical practice. Many equations have been published, but provide inconsistent predictions. Aims: To test whether a single equation for lean mass (LM) estimation from BIA is appropriate across wide ranges of age, pubertal status and nutritional status, by testing whether specific groups differ in the slope or intercept of the equation. Subjects/Methods: In 547 healthy individuals aged 4–24 years (240 males), we collected data on body mass (BM) and height (HT), and lean mass (LM) using the 4-component model. Impedance ( Z ) was measured using TANITA BC418MA instrumentation. LM was regressed on HT 2 / Z . Multiple regression analysis was conducted to investigate whether groups based on gender, age, pubertal status or nutritional status differed in the association of LM with HT 2 / Z . Results: BM ranged from 5 to 128 kg. HT 2 / Z was a strong predictor of LM ( r 2 =0.953, s.e.e.=2.9 kg). There was little evidence of a sex difference in this relationship, however, children aged 4–7 years and 16–19 years differed significantly from other age groups in regression slopes and intercepts. Similar variability was encountered for pubertal stage, but not for nutritional status. Conclusions: No single BIA equation applies across the age range 4–24 years. At certain ages or pubertal stages, the slope and intercept of the equation relating LM to HT 2 / Z alters. Failure to address such age effects is likely to result in poor accuracy of BIA (errors of several kg) for longitudinal studies of change in body composition.
doi_str_mv 10.1038/ejcn.2011.213
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273626226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A314650400</galeid><sourcerecordid>A314650400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-183d3f8b232489cd76ca3c34c23d86d3547ae25bb7950d67a79f7e0e97b117ca3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEokvhyBVZQkIcyOKPxE5OqKoKVKrEBc6WY0-yXjn21naK-Dv8UhxR2oJWyAfL42feGY_fqnpJ8JZg1r2HvfZbignZUsIeVRvSCF63vMGPqw3u26ZmGIuT6llKe4zLpaBPqxNKaUsJ5pvq52VCCiXrJwdosAEc6BytVg7Z-QBGeQ0IrheVbfDoRjlr0Bgi0jvrTASPwoi-WwMoKj9BWo9qgnfosAwQc1FJWeWl1PAG-aUorzp34Q_o4qYkrzXGGGaUd4CaWof5EDz4jOZgwD2vnozKJXhxu59W3z5efD3_XF99-XR5fnZV65azXJOOGTZ2A2W06XptBNeKadZoykzHDWsboYC2wyD6FhsulOhHARh6MRAiCntavf2te4jheoGU5WyTBueUh7AkSahgnHJKeUFf_4PuwxLLu5KkvCkc61n7P4pQLlrclcbvqUk5kNaPIUel19LyjJGGt7jBuFD1EWoCD1G5MqzRlvBf_PYIX5aB2eqjCW8eJOxAubxLwS3rf6WjnegYUoowykO0s4o_JMFytaRcLSlXS8piycK_up3CMsxg7ug_HrxvNZWrYqL4YExHFX8BpDzpXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1267508563</pqid></control><display><type>article</type><title>Is a single bioelectrical impedance equation valid for children of wide ranges of age, pubertal status and nutritional status? Evidence from the 4-component model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Montagnese, C ; Williams, J E ; Haroun, D ; Siervo, M ; Fewtrell, M S ; Wells, J C K</creator><creatorcontrib>Montagnese, C ; Williams, J E ; Haroun, D ; Siervo, M ; Fewtrell, M S ; Wells, J C K</creatorcontrib><description>Background/Objectives: Bioelectrical impedance analysis (BIA) is widely used to predict body composition in paediatric research and clinical practice. Many equations have been published, but provide inconsistent predictions. Aims: To test whether a single equation for lean mass (LM) estimation from BIA is appropriate across wide ranges of age, pubertal status and nutritional status, by testing whether specific groups differ in the slope or intercept of the equation. Subjects/Methods: In 547 healthy individuals aged 4–24 years (240 males), we collected data on body mass (BM) and height (HT), and lean mass (LM) using the 4-component model. Impedance ( Z ) was measured using TANITA BC418MA instrumentation. LM was regressed on HT 2 / Z . Multiple regression analysis was conducted to investigate whether groups based on gender, age, pubertal status or nutritional status differed in the association of LM with HT 2 / Z . Results: BM ranged from 5 to 128 kg. HT 2 / Z was a strong predictor of LM ( r 2 =0.953, s.e.e.=2.9 kg). There was little evidence of a sex difference in this relationship, however, children aged 4–7 years and 16–19 years differed significantly from other age groups in regression slopes and intercepts. Similar variability was encountered for pubertal stage, but not for nutritional status. Conclusions: No single BIA equation applies across the age range 4–24 years. At certain ages or pubertal stages, the slope and intercept of the equation relating LM to HT 2 / Z alters. Failure to address such age effects is likely to result in poor accuracy of BIA (errors of several kg) for longitudinal studies of change in body composition.</description><identifier>ISSN: 0954-3007</identifier><identifier>EISSN: 1476-5640</identifier><identifier>DOI: 10.1038/ejcn.2011.213</identifier><identifier>PMID: 22252106</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/700 ; Adolescent ; Adult ; Age ; Age Factors ; Anthropometry - methods ; Bioelectricity ; Body Composition ; Body Fluid Compartments ; Body mass ; Body Weight ; Child ; Child, Preschool ; Children ; Children &amp; youth ; Clinical Nutrition ; Electric Impedance ; Electrical engineering ; Electrophysiology ; Epidemiology ; Female ; Gender ; Humans ; Impedance ; Impedance, Bioelectric ; Instrumentation ; Internal Medicine ; Longitudinal studies ; Male ; Mathematical Concepts ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Models, Biological ; Multiple regression analysis ; Nutrition ; Nutritional Status ; original-article ; Pediatrics ; Puberty ; Public Health ; Regression Analysis ; Sex differences ; Young Adult</subject><ispartof>European journal of clinical nutrition, 2013-01, Vol.67 (Suppl 1), p.S34-S39</ispartof><rights>Macmillan Publishers Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2013</rights><rights>Macmillan Publishers Limited 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-183d3f8b232489cd76ca3c34c23d86d3547ae25bb7950d67a79f7e0e97b117ca3</citedby><cites>FETCH-LOGICAL-c563t-183d3f8b232489cd76ca3c34c23d86d3547ae25bb7950d67a79f7e0e97b117ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ejcn.2011.213$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ejcn.2011.213$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22252106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montagnese, C</creatorcontrib><creatorcontrib>Williams, J E</creatorcontrib><creatorcontrib>Haroun, D</creatorcontrib><creatorcontrib>Siervo, M</creatorcontrib><creatorcontrib>Fewtrell, M S</creatorcontrib><creatorcontrib>Wells, J C K</creatorcontrib><title>Is a single bioelectrical impedance equation valid for children of wide ranges of age, pubertal status and nutritional status? Evidence from the 4-component model</title><title>European journal of clinical nutrition</title><addtitle>Eur J Clin Nutr</addtitle><addtitle>Eur J Clin Nutr</addtitle><description>Background/Objectives: Bioelectrical impedance analysis (BIA) is widely used to predict body composition in paediatric research and clinical practice. Many equations have been published, but provide inconsistent predictions. Aims: To test whether a single equation for lean mass (LM) estimation from BIA is appropriate across wide ranges of age, pubertal status and nutritional status, by testing whether specific groups differ in the slope or intercept of the equation. Subjects/Methods: In 547 healthy individuals aged 4–24 years (240 males), we collected data on body mass (BM) and height (HT), and lean mass (LM) using the 4-component model. Impedance ( Z ) was measured using TANITA BC418MA instrumentation. LM was regressed on HT 2 / Z . Multiple regression analysis was conducted to investigate whether groups based on gender, age, pubertal status or nutritional status differed in the association of LM with HT 2 / Z . Results: BM ranged from 5 to 128 kg. HT 2 / Z was a strong predictor of LM ( r 2 =0.953, s.e.e.=2.9 kg). There was little evidence of a sex difference in this relationship, however, children aged 4–7 years and 16–19 years differed significantly from other age groups in regression slopes and intercepts. Similar variability was encountered for pubertal stage, but not for nutritional status. Conclusions: No single BIA equation applies across the age range 4–24 years. At certain ages or pubertal stages, the slope and intercept of the equation relating LM to HT 2 / Z alters. Failure to address such age effects is likely to result in poor accuracy of BIA (errors of several kg) for longitudinal studies of change in body composition.</description><subject>692/700</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Age</subject><subject>Age Factors</subject><subject>Anthropometry - methods</subject><subject>Bioelectricity</subject><subject>Body Composition</subject><subject>Body Fluid Compartments</subject><subject>Body mass</subject><subject>Body Weight</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Children</subject><subject>Children &amp; youth</subject><subject>Clinical Nutrition</subject><subject>Electric Impedance</subject><subject>Electrical engineering</subject><subject>Electrophysiology</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Gender</subject><subject>Humans</subject><subject>Impedance</subject><subject>Impedance, Bioelectric</subject><subject>Instrumentation</subject><subject>Internal Medicine</subject><subject>Longitudinal studies</subject><subject>Male</subject><subject>Mathematical Concepts</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Models, Biological</subject><subject>Multiple regression analysis</subject><subject>Nutrition</subject><subject>Nutritional Status</subject><subject>original-article</subject><subject>Pediatrics</subject><subject>Puberty</subject><subject>Public Health</subject><subject>Regression Analysis</subject><subject>Sex differences</subject><subject>Young Adult</subject><issn>0954-3007</issn><issn>1476-5640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kk1v1DAQhiMEokvhyBVZQkIcyOKPxE5OqKoKVKrEBc6WY0-yXjn21naK-Dv8UhxR2oJWyAfL42feGY_fqnpJ8JZg1r2HvfZbignZUsIeVRvSCF63vMGPqw3u26ZmGIuT6llKe4zLpaBPqxNKaUsJ5pvq52VCCiXrJwdosAEc6BytVg7Z-QBGeQ0IrheVbfDoRjlr0Bgi0jvrTASPwoi-WwMoKj9BWo9qgnfosAwQc1FJWeWl1PAG-aUorzp34Q_o4qYkrzXGGGaUd4CaWof5EDz4jOZgwD2vnozKJXhxu59W3z5efD3_XF99-XR5fnZV65azXJOOGTZ2A2W06XptBNeKadZoykzHDWsboYC2wyD6FhsulOhHARh6MRAiCntavf2te4jheoGU5WyTBueUh7AkSahgnHJKeUFf_4PuwxLLu5KkvCkc61n7P4pQLlrclcbvqUk5kNaPIUel19LyjJGGt7jBuFD1EWoCD1G5MqzRlvBf_PYIX5aB2eqjCW8eJOxAubxLwS3rf6WjnegYUoowykO0s4o_JMFytaRcLSlXS8piycK_up3CMsxg7ug_HrxvNZWrYqL4YExHFX8BpDzpXw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Montagnese, C</creator><creator>Williams, J E</creator><creator>Haroun, D</creator><creator>Siervo, M</creator><creator>Fewtrell, M S</creator><creator>Wells, J C K</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20130101</creationdate><title>Is a single bioelectrical impedance equation valid for children of wide ranges of age, pubertal status and nutritional status? Evidence from the 4-component model</title><author>Montagnese, C ; Williams, J E ; Haroun, D ; Siervo, M ; Fewtrell, M S ; Wells, J C K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-183d3f8b232489cd76ca3c34c23d86d3547ae25bb7950d67a79f7e0e97b117ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>692/700</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Age</topic><topic>Age Factors</topic><topic>Anthropometry - methods</topic><topic>Bioelectricity</topic><topic>Body Composition</topic><topic>Body Fluid Compartments</topic><topic>Body mass</topic><topic>Body Weight</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Children</topic><topic>Children &amp; youth</topic><topic>Clinical Nutrition</topic><topic>Electric Impedance</topic><topic>Electrical engineering</topic><topic>Electrophysiology</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Gender</topic><topic>Humans</topic><topic>Impedance</topic><topic>Impedance, Bioelectric</topic><topic>Instrumentation</topic><topic>Internal Medicine</topic><topic>Longitudinal studies</topic><topic>Male</topic><topic>Mathematical Concepts</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Models, Biological</topic><topic>Multiple regression analysis</topic><topic>Nutrition</topic><topic>Nutritional Status</topic><topic>original-article</topic><topic>Pediatrics</topic><topic>Puberty</topic><topic>Public Health</topic><topic>Regression Analysis</topic><topic>Sex differences</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montagnese, C</creatorcontrib><creatorcontrib>Williams, J E</creatorcontrib><creatorcontrib>Haroun, D</creatorcontrib><creatorcontrib>Siervo, M</creatorcontrib><creatorcontrib>Fewtrell, M S</creatorcontrib><creatorcontrib>Wells, J C K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of clinical nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montagnese, C</au><au>Williams, J E</au><au>Haroun, D</au><au>Siervo, M</au><au>Fewtrell, M S</au><au>Wells, J C K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is a single bioelectrical impedance equation valid for children of wide ranges of age, pubertal status and nutritional status? Evidence from the 4-component model</atitle><jtitle>European journal of clinical nutrition</jtitle><stitle>Eur J Clin Nutr</stitle><addtitle>Eur J Clin Nutr</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>67</volume><issue>Suppl 1</issue><spage>S34</spage><epage>S39</epage><pages>S34-S39</pages><issn>0954-3007</issn><eissn>1476-5640</eissn><abstract>Background/Objectives: Bioelectrical impedance analysis (BIA) is widely used to predict body composition in paediatric research and clinical practice. Many equations have been published, but provide inconsistent predictions. Aims: To test whether a single equation for lean mass (LM) estimation from BIA is appropriate across wide ranges of age, pubertal status and nutritional status, by testing whether specific groups differ in the slope or intercept of the equation. Subjects/Methods: In 547 healthy individuals aged 4–24 years (240 males), we collected data on body mass (BM) and height (HT), and lean mass (LM) using the 4-component model. Impedance ( Z ) was measured using TANITA BC418MA instrumentation. LM was regressed on HT 2 / Z . Multiple regression analysis was conducted to investigate whether groups based on gender, age, pubertal status or nutritional status differed in the association of LM with HT 2 / Z . Results: BM ranged from 5 to 128 kg. HT 2 / Z was a strong predictor of LM ( r 2 =0.953, s.e.e.=2.9 kg). There was little evidence of a sex difference in this relationship, however, children aged 4–7 years and 16–19 years differed significantly from other age groups in regression slopes and intercepts. Similar variability was encountered for pubertal stage, but not for nutritional status. Conclusions: No single BIA equation applies across the age range 4–24 years. At certain ages or pubertal stages, the slope and intercept of the equation relating LM to HT 2 / Z alters. Failure to address such age effects is likely to result in poor accuracy of BIA (errors of several kg) for longitudinal studies of change in body composition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22252106</pmid><doi>10.1038/ejcn.2011.213</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-3007
ispartof European journal of clinical nutrition, 2013-01, Vol.67 (Suppl 1), p.S34-S39
issn 0954-3007
1476-5640
language eng
recordid cdi_proquest_miscellaneous_1273626226
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects 692/700
Adolescent
Adult
Age
Age Factors
Anthropometry - methods
Bioelectricity
Body Composition
Body Fluid Compartments
Body mass
Body Weight
Child
Child, Preschool
Children
Children & youth
Clinical Nutrition
Electric Impedance
Electrical engineering
Electrophysiology
Epidemiology
Female
Gender
Humans
Impedance
Impedance, Bioelectric
Instrumentation
Internal Medicine
Longitudinal studies
Male
Mathematical Concepts
Medicine
Medicine & Public Health
Metabolic Diseases
Models, Biological
Multiple regression analysis
Nutrition
Nutritional Status
original-article
Pediatrics
Puberty
Public Health
Regression Analysis
Sex differences
Young Adult
title Is a single bioelectrical impedance equation valid for children of wide ranges of age, pubertal status and nutritional status? Evidence from the 4-component model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20a%20single%20bioelectrical%20impedance%20equation%20valid%20for%20children%20of%20wide%20ranges%20of%20age,%20pubertal%20status%20and%20nutritional%20status?%20Evidence%20from%20the%204-component%20model&rft.jtitle=European%20journal%20of%20clinical%20nutrition&rft.au=Montagnese,%20C&rft.date=2013-01-01&rft.volume=67&rft.issue=Suppl%201&rft.spage=S34&rft.epage=S39&rft.pages=S34-S39&rft.issn=0954-3007&rft.eissn=1476-5640&rft_id=info:doi/10.1038/ejcn.2011.213&rft_dat=%3Cgale_proqu%3EA314650400%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1267508563&rft_id=info:pmid/22252106&rft_galeid=A314650400&rfr_iscdi=true