Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions
The Fenton reaction, the oxidation of ferrous iron by hydrogen peroxide (H2O2), is typically assumed to be a source of hydroxyl radical (HO•) in natural systems, however, formation of HO• in this process is strongly dependent upon solution pH and the ligand environment, with HO• only formed when Fe(...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2013-01, Vol.47 (2), p.829-835 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 835 |
---|---|
container_issue | 2 |
container_start_page | 829 |
container_title | Environmental science & technology |
container_volume | 47 |
creator | Miller, Christopher J Rose, Andrew L Waite, T. David |
description | The Fenton reaction, the oxidation of ferrous iron by hydrogen peroxide (H2O2), is typically assumed to be a source of hydroxyl radical (HO•) in natural systems, however, formation of HO• in this process is strongly dependent upon solution pH and the ligand environment, with HO• only formed when Fe(II) is organically complexed. In this study we examine the formation of HO• when Fe(II)–NOM complexes are oxidized by H2O2 using phthalhydrazide as a probe for HO•. We demonstrate that HO• formation can be quantitatively described using a kinetic model that assumes HO• formation occurs solely from the reaction of Fe(II)–NOM complexes with H2O2, even though this reaction is sufficiently slow to play only a negligible role in the overall oxidation rate of total Fe(II). As such, NOM is seen to play a dual role in circumneutral natural systems in stabilizing Fe(II) toward oxidation by H2O2 while enabling the formation of HO• through this oxidation process. |
doi_str_mv | 10.1021/es303876h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273541991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273541991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-91098373737f1394654ef141c44a9cd63fc98e2397a4e2b9ef7caecbe0697a223</originalsourceid><addsrcrecordid>eNpFkc1OGzEUha2qVQlpF32ByptKsJjin_nzEkWERKIKSkHqbuTYd4TRjJ3aY0h2vAIST8iT4EBa5IWlez6fe30uQt8o-UkJoycQOOF1Vd58QCNaMJIVdUE_ohEhlGeCl38O0GEIt4QQxkn9GR0wzjjNmRihp9lWe7fZdngptVGyw5fe6agG4yxebfGMLdjzw-Mv0EYOoPFiY7R8FV2Lp3A0nx_jievXHWySmh78jvfSWgC8NHfg8TR2d0bhU2U0vrY6VSbGq9hbiINP3aYews19sk6Cs9rsrMMX9KmVXYCv-3uMrqdnV5NZdrE4n09OLzLJeTVkghJR82p3WspFXhY5tDSnKs-lULrkrRI1MC4qmQNbCWgrJUGtgJSpxBgfo6M337V3fyOEoelNUNB10oKLoaGs4kVOhaAJ_b5H46oH3ay96aXfNv-STMCPPSBDirH10ioT3rmKlGmS8p2TKjS3LnqbfthQ0uw22fzfJH8BfwGOzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273541991</pqid></control><display><type>article</type><title>Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions</title><source>MEDLINE</source><source>ACS Publications</source><creator>Miller, Christopher J ; Rose, Andrew L ; Waite, T. David</creator><creatorcontrib>Miller, Christopher J ; Rose, Andrew L ; Waite, T. David</creatorcontrib><description>The Fenton reaction, the oxidation of ferrous iron by hydrogen peroxide (H2O2), is typically assumed to be a source of hydroxyl radical (HO•) in natural systems, however, formation of HO• in this process is strongly dependent upon solution pH and the ligand environment, with HO• only formed when Fe(II) is organically complexed. In this study we examine the formation of HO• when Fe(II)–NOM complexes are oxidized by H2O2 using phthalhydrazide as a probe for HO•. We demonstrate that HO• formation can be quantitatively described using a kinetic model that assumes HO• formation occurs solely from the reaction of Fe(II)–NOM complexes with H2O2, even though this reaction is sufficiently slow to play only a negligible role in the overall oxidation rate of total Fe(II). As such, NOM is seen to play a dual role in circumneutral natural systems in stabilizing Fe(II) toward oxidation by H2O2 while enabling the formation of HO• through this oxidation process.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es303876h</identifier><identifier>PMID: 23231429</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Benzopyrans - chemistry ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Ferrous Compounds - chemistry ; Hydrogen Peroxide - chemistry ; Hydrogen-Ion Concentration ; Hydrology ; Hydrology. Hydrogeology ; Hydroxyl Radical - chemistry ; Kinetics ; Mineralogy ; Non silicates ; Oxidation-Reduction ; Rivers - chemistry</subject><ispartof>Environmental science & technology, 2013-01, Vol.47 (2), p.829-835</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es303876h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es303876h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27062396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23231429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Christopher J</creatorcontrib><creatorcontrib>Rose, Andrew L</creatorcontrib><creatorcontrib>Waite, T. David</creatorcontrib><title>Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The Fenton reaction, the oxidation of ferrous iron by hydrogen peroxide (H2O2), is typically assumed to be a source of hydroxyl radical (HO•) in natural systems, however, formation of HO• in this process is strongly dependent upon solution pH and the ligand environment, with HO• only formed when Fe(II) is organically complexed. In this study we examine the formation of HO• when Fe(II)–NOM complexes are oxidized by H2O2 using phthalhydrazide as a probe for HO•. We demonstrate that HO• formation can be quantitatively described using a kinetic model that assumes HO• formation occurs solely from the reaction of Fe(II)–NOM complexes with H2O2, even though this reaction is sufficiently slow to play only a negligible role in the overall oxidation rate of total Fe(II). As such, NOM is seen to play a dual role in circumneutral natural systems in stabilizing Fe(II) toward oxidation by H2O2 while enabling the formation of HO• through this oxidation process.</description><subject>Benzopyrans - chemistry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Ferrous Compounds - chemistry</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Kinetics</subject><subject>Mineralogy</subject><subject>Non silicates</subject><subject>Oxidation-Reduction</subject><subject>Rivers - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc1OGzEUha2qVQlpF32ByptKsJjin_nzEkWERKIKSkHqbuTYd4TRjJ3aY0h2vAIST8iT4EBa5IWlez6fe30uQt8o-UkJoycQOOF1Vd58QCNaMJIVdUE_ohEhlGeCl38O0GEIt4QQxkn9GR0wzjjNmRihp9lWe7fZdngptVGyw5fe6agG4yxebfGMLdjzw-Mv0EYOoPFiY7R8FV2Lp3A0nx_jievXHWySmh78jvfSWgC8NHfg8TR2d0bhU2U0vrY6VSbGq9hbiINP3aYews19sk6Cs9rsrMMX9KmVXYCv-3uMrqdnV5NZdrE4n09OLzLJeTVkghJR82p3WspFXhY5tDSnKs-lULrkrRI1MC4qmQNbCWgrJUGtgJSpxBgfo6M337V3fyOEoelNUNB10oKLoaGs4kVOhaAJ_b5H46oH3ay96aXfNv-STMCPPSBDirH10ioT3rmKlGmS8p2TKjS3LnqbfthQ0uw22fzfJH8BfwGOzA</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Miller, Christopher J</creator><creator>Rose, Andrew L</creator><creator>Waite, T. David</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130115</creationdate><title>Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions</title><author>Miller, Christopher J ; Rose, Andrew L ; Waite, T. David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-91098373737f1394654ef141c44a9cd63fc98e2397a4e2b9ef7caecbe0697a223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Benzopyrans - chemistry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Ferrous Compounds - chemistry</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Kinetics</topic><topic>Mineralogy</topic><topic>Non silicates</topic><topic>Oxidation-Reduction</topic><topic>Rivers - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Christopher J</creatorcontrib><creatorcontrib>Rose, Andrew L</creatorcontrib><creatorcontrib>Waite, T. David</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Christopher J</au><au>Rose, Andrew L</au><au>Waite, T. David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>47</volume><issue>2</issue><spage>829</spage><epage>835</epage><pages>829-835</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The Fenton reaction, the oxidation of ferrous iron by hydrogen peroxide (H2O2), is typically assumed to be a source of hydroxyl radical (HO•) in natural systems, however, formation of HO• in this process is strongly dependent upon solution pH and the ligand environment, with HO• only formed when Fe(II) is organically complexed. In this study we examine the formation of HO• when Fe(II)–NOM complexes are oxidized by H2O2 using phthalhydrazide as a probe for HO•. We demonstrate that HO• formation can be quantitatively described using a kinetic model that assumes HO• formation occurs solely from the reaction of Fe(II)–NOM complexes with H2O2, even though this reaction is sufficiently slow to play only a negligible role in the overall oxidation rate of total Fe(II). As such, NOM is seen to play a dual role in circumneutral natural systems in stabilizing Fe(II) toward oxidation by H2O2 while enabling the formation of HO• through this oxidation process.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23231429</pmid><doi>10.1021/es303876h</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2013-01, Vol.47 (2), p.829-835 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1273541991 |
source | MEDLINE; ACS Publications |
subjects | Benzopyrans - chemistry Earth sciences Earth, ocean, space Exact sciences and technology Ferrous Compounds - chemistry Hydrogen Peroxide - chemistry Hydrogen-Ion Concentration Hydrology Hydrology. Hydrogeology Hydroxyl Radical - chemistry Kinetics Mineralogy Non silicates Oxidation-Reduction Rivers - chemistry |
title | Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyl%20Radical%20Production%20by%20H2O2%E2%80%91Mediated%20Oxidation%20of%20Fe(II)%20Complexed%20by%20Suwannee%20River%20Fulvic%20Acid%20Under%20Circumneutral%20Freshwater%20Conditions&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Miller,%20Christopher%20J&rft.date=2013-01-15&rft.volume=47&rft.issue=2&rft.spage=829&rft.epage=835&rft.pages=829-835&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es303876h&rft_dat=%3Cproquest_pubme%3E1273541991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273541991&rft_id=info:pmid/23231429&rfr_iscdi=true |