Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions

The Fenton reaction, the oxidation of ferrous iron by hydrogen peroxide (H2O2), is typically assumed to be a source of hydroxyl radical (HO•) in natural systems, however, formation of HO• in this process is strongly dependent upon solution pH and the ligand environment, with HO• only formed when Fe(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2013-01, Vol.47 (2), p.829-835
Hauptverfasser: Miller, Christopher J, Rose, Andrew L, Waite, T. David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 835
container_issue 2
container_start_page 829
container_title Environmental science & technology
container_volume 47
creator Miller, Christopher J
Rose, Andrew L
Waite, T. David
description The Fenton reaction, the oxidation of ferrous iron by hydrogen peroxide (H2O2), is typically assumed to be a source of hydroxyl radical (HO•) in natural systems, however, formation of HO• in this process is strongly dependent upon solution pH and the ligand environment, with HO• only formed when Fe(II) is organically complexed. In this study we examine the formation of HO• when Fe(II)–NOM complexes are oxidized by H2O2 using phthalhydrazide as a probe for HO•. We demonstrate that HO• formation can be quantitatively described using a kinetic model that assumes HO• formation occurs solely from the reaction of Fe(II)–NOM complexes with H2O2, even though this reaction is sufficiently slow to play only a negligible role in the overall oxidation rate of total Fe(II). As such, NOM is seen to play a dual role in circumneutral natural systems in stabilizing Fe(II) toward oxidation by H2O2 while enabling the formation of HO• through this oxidation process.
doi_str_mv 10.1021/es303876h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273541991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273541991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-91098373737f1394654ef141c44a9cd63fc98e2397a4e2b9ef7caecbe0697a223</originalsourceid><addsrcrecordid>eNpFkc1OGzEUha2qVQlpF32ByptKsJjin_nzEkWERKIKSkHqbuTYd4TRjJ3aY0h2vAIST8iT4EBa5IWlez6fe30uQt8o-UkJoycQOOF1Vd58QCNaMJIVdUE_ohEhlGeCl38O0GEIt4QQxkn9GR0wzjjNmRihp9lWe7fZdngptVGyw5fe6agG4yxebfGMLdjzw-Mv0EYOoPFiY7R8FV2Lp3A0nx_jievXHWySmh78jvfSWgC8NHfg8TR2d0bhU2U0vrY6VSbGq9hbiINP3aYews19sk6Cs9rsrMMX9KmVXYCv-3uMrqdnV5NZdrE4n09OLzLJeTVkghJR82p3WspFXhY5tDSnKs-lULrkrRI1MC4qmQNbCWgrJUGtgJSpxBgfo6M337V3fyOEoelNUNB10oKLoaGs4kVOhaAJ_b5H46oH3ay96aXfNv-STMCPPSBDirH10ioT3rmKlGmS8p2TKjS3LnqbfthQ0uw22fzfJH8BfwGOzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273541991</pqid></control><display><type>article</type><title>Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions</title><source>MEDLINE</source><source>ACS Publications</source><creator>Miller, Christopher J ; Rose, Andrew L ; Waite, T. David</creator><creatorcontrib>Miller, Christopher J ; Rose, Andrew L ; Waite, T. David</creatorcontrib><description>The Fenton reaction, the oxidation of ferrous iron by hydrogen peroxide (H2O2), is typically assumed to be a source of hydroxyl radical (HO•) in natural systems, however, formation of HO• in this process is strongly dependent upon solution pH and the ligand environment, with HO• only formed when Fe(II) is organically complexed. In this study we examine the formation of HO• when Fe(II)–NOM complexes are oxidized by H2O2 using phthalhydrazide as a probe for HO•. We demonstrate that HO• formation can be quantitatively described using a kinetic model that assumes HO• formation occurs solely from the reaction of Fe(II)–NOM complexes with H2O2, even though this reaction is sufficiently slow to play only a negligible role in the overall oxidation rate of total Fe(II). As such, NOM is seen to play a dual role in circumneutral natural systems in stabilizing Fe(II) toward oxidation by H2O2 while enabling the formation of HO• through this oxidation process.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es303876h</identifier><identifier>PMID: 23231429</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Benzopyrans - chemistry ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Ferrous Compounds - chemistry ; Hydrogen Peroxide - chemistry ; Hydrogen-Ion Concentration ; Hydrology ; Hydrology. Hydrogeology ; Hydroxyl Radical - chemistry ; Kinetics ; Mineralogy ; Non silicates ; Oxidation-Reduction ; Rivers - chemistry</subject><ispartof>Environmental science &amp; technology, 2013-01, Vol.47 (2), p.829-835</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es303876h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es303876h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27062396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23231429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Christopher J</creatorcontrib><creatorcontrib>Rose, Andrew L</creatorcontrib><creatorcontrib>Waite, T. David</creatorcontrib><title>Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The Fenton reaction, the oxidation of ferrous iron by hydrogen peroxide (H2O2), is typically assumed to be a source of hydroxyl radical (HO•) in natural systems, however, formation of HO• in this process is strongly dependent upon solution pH and the ligand environment, with HO• only formed when Fe(II) is organically complexed. In this study we examine the formation of HO• when Fe(II)–NOM complexes are oxidized by H2O2 using phthalhydrazide as a probe for HO•. We demonstrate that HO• formation can be quantitatively described using a kinetic model that assumes HO• formation occurs solely from the reaction of Fe(II)–NOM complexes with H2O2, even though this reaction is sufficiently slow to play only a negligible role in the overall oxidation rate of total Fe(II). As such, NOM is seen to play a dual role in circumneutral natural systems in stabilizing Fe(II) toward oxidation by H2O2 while enabling the formation of HO• through this oxidation process.</description><subject>Benzopyrans - chemistry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Ferrous Compounds - chemistry</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Kinetics</subject><subject>Mineralogy</subject><subject>Non silicates</subject><subject>Oxidation-Reduction</subject><subject>Rivers - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc1OGzEUha2qVQlpF32ByptKsJjin_nzEkWERKIKSkHqbuTYd4TRjJ3aY0h2vAIST8iT4EBa5IWlez6fe30uQt8o-UkJoycQOOF1Vd58QCNaMJIVdUE_ohEhlGeCl38O0GEIt4QQxkn9GR0wzjjNmRihp9lWe7fZdngptVGyw5fe6agG4yxebfGMLdjzw-Mv0EYOoPFiY7R8FV2Lp3A0nx_jievXHWySmh78jvfSWgC8NHfg8TR2d0bhU2U0vrY6VSbGq9hbiINP3aYews19sk6Cs9rsrMMX9KmVXYCv-3uMrqdnV5NZdrE4n09OLzLJeTVkghJR82p3WspFXhY5tDSnKs-lULrkrRI1MC4qmQNbCWgrJUGtgJSpxBgfo6M337V3fyOEoelNUNB10oKLoaGs4kVOhaAJ_b5H46oH3ay96aXfNv-STMCPPSBDirH10ioT3rmKlGmS8p2TKjS3LnqbfthQ0uw22fzfJH8BfwGOzA</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Miller, Christopher J</creator><creator>Rose, Andrew L</creator><creator>Waite, T. David</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130115</creationdate><title>Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions</title><author>Miller, Christopher J ; Rose, Andrew L ; Waite, T. David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-91098373737f1394654ef141c44a9cd63fc98e2397a4e2b9ef7caecbe0697a223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Benzopyrans - chemistry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Ferrous Compounds - chemistry</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Kinetics</topic><topic>Mineralogy</topic><topic>Non silicates</topic><topic>Oxidation-Reduction</topic><topic>Rivers - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Christopher J</creatorcontrib><creatorcontrib>Rose, Andrew L</creatorcontrib><creatorcontrib>Waite, T. David</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Christopher J</au><au>Rose, Andrew L</au><au>Waite, T. David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>47</volume><issue>2</issue><spage>829</spage><epage>835</epage><pages>829-835</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The Fenton reaction, the oxidation of ferrous iron by hydrogen peroxide (H2O2), is typically assumed to be a source of hydroxyl radical (HO•) in natural systems, however, formation of HO• in this process is strongly dependent upon solution pH and the ligand environment, with HO• only formed when Fe(II) is organically complexed. In this study we examine the formation of HO• when Fe(II)–NOM complexes are oxidized by H2O2 using phthalhydrazide as a probe for HO•. We demonstrate that HO• formation can be quantitatively described using a kinetic model that assumes HO• formation occurs solely from the reaction of Fe(II)–NOM complexes with H2O2, even though this reaction is sufficiently slow to play only a negligible role in the overall oxidation rate of total Fe(II). As such, NOM is seen to play a dual role in circumneutral natural systems in stabilizing Fe(II) toward oxidation by H2O2 while enabling the formation of HO• through this oxidation process.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23231429</pmid><doi>10.1021/es303876h</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2013-01, Vol.47 (2), p.829-835
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1273541991
source MEDLINE; ACS Publications
subjects Benzopyrans - chemistry
Earth sciences
Earth, ocean, space
Exact sciences and technology
Ferrous Compounds - chemistry
Hydrogen Peroxide - chemistry
Hydrogen-Ion Concentration
Hydrology
Hydrology. Hydrogeology
Hydroxyl Radical - chemistry
Kinetics
Mineralogy
Non silicates
Oxidation-Reduction
Rivers - chemistry
title Hydroxyl Radical Production by H2O2‑Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyl%20Radical%20Production%20by%20H2O2%E2%80%91Mediated%20Oxidation%20of%20Fe(II)%20Complexed%20by%20Suwannee%20River%20Fulvic%20Acid%20Under%20Circumneutral%20Freshwater%20Conditions&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Miller,%20Christopher%20J&rft.date=2013-01-15&rft.volume=47&rft.issue=2&rft.spage=829&rft.epage=835&rft.pages=829-835&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es303876h&rft_dat=%3Cproquest_pubme%3E1273541991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273541991&rft_id=info:pmid/23231429&rfr_iscdi=true