Image-Difference Prediction: From Grayscale to Color
Existing image-difference measures show excellent accuracy in predicting distortions, such as lossy compression, noise, and blur. Their performance on certain other distortions could be improved; one example of this is gamut mapping. This is partly because they either do not interpret chromatic info...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2013-02, Vol.22 (2), p.435-446 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 446 |
---|---|
container_issue | 2 |
container_start_page | 435 |
container_title | IEEE transactions on image processing |
container_volume | 22 |
creator | Lissner, I. Preiss, J. Urban, P. Lichtenauer, M. S. Zolliker, P. |
description | Existing image-difference measures show excellent accuracy in predicting distortions, such as lossy compression, noise, and blur. Their performance on certain other distortions could be improved; one example of this is gamut mapping. This is partly because they either do not interpret chromatic information correctly or they ignore it entirely. We present an image-difference framework that comprises image normalization, feature extraction, and feature combination. Based on this framework, we create image-difference measures by selecting specific implementations for each of the steps. Particular emphasis is placed on using color information to improve the assessment of gamut-mapped images. Our best image-difference measure shows significantly higher prediction accuracy on a gamut-mapping dataset than all other evaluated measures. |
doi_str_mv | 10.1109/TIP.2012.2216279 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273507404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6307862</ieee_id><sourcerecordid>1273507404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ab3f0b40d8106e13be9dda987f6427161f008ae641bbe17180d72189fa9540d33</originalsourceid><addsrcrecordid>eNpFkEFLw0AQRhdRbK3eBUFyEbykzuxudrPepNpaKNhDPYdNMiuRpKm77aH_3pTGepqBed8w8xi7RRgjgnlazZdjDsjHnKPi2pyxIRqJMYDk510PiY41SjNgVyF8A6BMUF2yARcAKU_4kMl5Y78ofq2cI0_rgqKlp7IqtlW7fo6mvm2imbf7UNiaom0bTdq69dfswtk60E1fR-xz-raavMeLj9l88rKICyHNNra5cJBLKFMERShyMmVpTaqdklyjQtddYUlJzHNCjSmUmmNqnDVJlxJixB6Peze-_dlR2GZNFQqqa7umdhcy5FokoCXIDoUjWvg2BE8u2_iqsX6fIWQHV1nnKju4ynpXXeS-377LGypPgT85HfDQA_bwv_N2XVThn1NpIoxQHXd35CoiOo2VAJ0qLn4B0Eh3kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273507404</pqid></control><display><type>article</type><title>Image-Difference Prediction: From Grayscale to Color</title><source>IEEE Electronic Library (IEL)</source><creator>Lissner, I. ; Preiss, J. ; Urban, P. ; Lichtenauer, M. S. ; Zolliker, P.</creator><creatorcontrib>Lissner, I. ; Preiss, J. ; Urban, P. ; Lichtenauer, M. S. ; Zolliker, P.</creatorcontrib><description>Existing image-difference measures show excellent accuracy in predicting distortions, such as lossy compression, noise, and blur. Their performance on certain other distortions could be improved; one example of this is gamut mapping. This is partly because they either do not interpret chromatic information correctly or they ignore it entirely. We present an image-difference framework that comprises image normalization, feature extraction, and feature combination. Based on this framework, we create image-difference measures by selecting specific implementations for each of the steps. Particular emphasis is placed on using color information to improve the assessment of gamut-mapped images. Our best image-difference measure shows significantly higher prediction accuracy on a gamut-mapping dataset than all other evaluated measures.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2216279</identifier><identifier>PMID: 23008252</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Adaptation models ; Applied sciences ; Color ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Feature extraction ; Image color analysis ; image difference ; Image processing ; image quality ; Indexes ; Information theory ; Information, signal and communications theory ; Observers ; Predictive models ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2013-02, Vol.22 (2), p.435-446</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ab3f0b40d8106e13be9dda987f6427161f008ae641bbe17180d72189fa9540d33</citedby><cites>FETCH-LOGICAL-c349t-ab3f0b40d8106e13be9dda987f6427161f008ae641bbe17180d72189fa9540d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6307862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6307862$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853936$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23008252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lissner, I.</creatorcontrib><creatorcontrib>Preiss, J.</creatorcontrib><creatorcontrib>Urban, P.</creatorcontrib><creatorcontrib>Lichtenauer, M. S.</creatorcontrib><creatorcontrib>Zolliker, P.</creatorcontrib><title>Image-Difference Prediction: From Grayscale to Color</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Existing image-difference measures show excellent accuracy in predicting distortions, such as lossy compression, noise, and blur. Their performance on certain other distortions could be improved; one example of this is gamut mapping. This is partly because they either do not interpret chromatic information correctly or they ignore it entirely. We present an image-difference framework that comprises image normalization, feature extraction, and feature combination. Based on this framework, we create image-difference measures by selecting specific implementations for each of the steps. Particular emphasis is placed on using color information to improve the assessment of gamut-mapped images. Our best image-difference measure shows significantly higher prediction accuracy on a gamut-mapping dataset than all other evaluated measures.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Applied sciences</subject><subject>Color</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>image difference</subject><subject>Image processing</subject><subject>image quality</subject><subject>Indexes</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Observers</subject><subject>Predictive models</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkEFLw0AQRhdRbK3eBUFyEbykzuxudrPepNpaKNhDPYdNMiuRpKm77aH_3pTGepqBed8w8xi7RRgjgnlazZdjDsjHnKPi2pyxIRqJMYDk510PiY41SjNgVyF8A6BMUF2yARcAKU_4kMl5Y78ofq2cI0_rgqKlp7IqtlW7fo6mvm2imbf7UNiaom0bTdq69dfswtk60E1fR-xz-raavMeLj9l88rKICyHNNra5cJBLKFMERShyMmVpTaqdklyjQtddYUlJzHNCjSmUmmNqnDVJlxJixB6Peze-_dlR2GZNFQqqa7umdhcy5FokoCXIDoUjWvg2BE8u2_iqsX6fIWQHV1nnKju4ynpXXeS-377LGypPgT85HfDQA_bwv_N2XVThn1NpIoxQHXd35CoiOo2VAJ0qLn4B0Eh3kw</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Lissner, I.</creator><creator>Preiss, J.</creator><creator>Urban, P.</creator><creator>Lichtenauer, M. S.</creator><creator>Zolliker, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130201</creationdate><title>Image-Difference Prediction: From Grayscale to Color</title><author>Lissner, I. ; Preiss, J. ; Urban, P. ; Lichtenauer, M. S. ; Zolliker, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ab3f0b40d8106e13be9dda987f6427161f008ae641bbe17180d72189fa9540d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Applied sciences</topic><topic>Color</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>image difference</topic><topic>Image processing</topic><topic>image quality</topic><topic>Indexes</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Observers</topic><topic>Predictive models</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lissner, I.</creatorcontrib><creatorcontrib>Preiss, J.</creatorcontrib><creatorcontrib>Urban, P.</creatorcontrib><creatorcontrib>Lichtenauer, M. S.</creatorcontrib><creatorcontrib>Zolliker, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lissner, I.</au><au>Preiss, J.</au><au>Urban, P.</au><au>Lichtenauer, M. S.</au><au>Zolliker, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-Difference Prediction: From Grayscale to Color</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>22</volume><issue>2</issue><spage>435</spage><epage>446</epage><pages>435-446</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Existing image-difference measures show excellent accuracy in predicting distortions, such as lossy compression, noise, and blur. Their performance on certain other distortions could be improved; one example of this is gamut mapping. This is partly because they either do not interpret chromatic information correctly or they ignore it entirely. We present an image-difference framework that comprises image normalization, feature extraction, and feature combination. Based on this framework, we create image-difference measures by selecting specific implementations for each of the steps. Particular emphasis is placed on using color information to improve the assessment of gamut-mapped images. Our best image-difference measure shows significantly higher prediction accuracy on a gamut-mapping dataset than all other evaluated measures.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23008252</pmid><doi>10.1109/TIP.2012.2216279</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2013-02, Vol.22 (2), p.435-446 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1273507404 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Adaptation models Applied sciences Color Detection, estimation, filtering, equalization, prediction Exact sciences and technology Feature extraction Image color analysis image difference Image processing image quality Indexes Information theory Information, signal and communications theory Observers Predictive models Signal and communications theory Signal processing Signal, noise Telecommunications and information theory |
title | Image-Difference Prediction: From Grayscale to Color |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-Difference%20Prediction:%20From%20Grayscale%20to%20Color&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lissner,%20I.&rft.date=2013-02-01&rft.volume=22&rft.issue=2&rft.spage=435&rft.epage=446&rft.pages=435-446&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2216279&rft_dat=%3Cproquest_RIE%3E1273507404%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273507404&rft_id=info:pmid/23008252&rft_ieee_id=6307862&rfr_iscdi=true |