Image-Difference Prediction: From Grayscale to Color

Existing image-difference measures show excellent accuracy in predicting distortions, such as lossy compression, noise, and blur. Their performance on certain other distortions could be improved; one example of this is gamut mapping. This is partly because they either do not interpret chromatic info...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2013-02, Vol.22 (2), p.435-446
Hauptverfasser: Lissner, I., Preiss, J., Urban, P., Lichtenauer, M. S., Zolliker, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 2
container_start_page 435
container_title IEEE transactions on image processing
container_volume 22
creator Lissner, I.
Preiss, J.
Urban, P.
Lichtenauer, M. S.
Zolliker, P.
description Existing image-difference measures show excellent accuracy in predicting distortions, such as lossy compression, noise, and blur. Their performance on certain other distortions could be improved; one example of this is gamut mapping. This is partly because they either do not interpret chromatic information correctly or they ignore it entirely. We present an image-difference framework that comprises image normalization, feature extraction, and feature combination. Based on this framework, we create image-difference measures by selecting specific implementations for each of the steps. Particular emphasis is placed on using color information to improve the assessment of gamut-mapped images. Our best image-difference measure shows significantly higher prediction accuracy on a gamut-mapping dataset than all other evaluated measures.
doi_str_mv 10.1109/TIP.2012.2216279
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273507404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6307862</ieee_id><sourcerecordid>1273507404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ab3f0b40d8106e13be9dda987f6427161f008ae641bbe17180d72189fa9540d33</originalsourceid><addsrcrecordid>eNpFkEFLw0AQRhdRbK3eBUFyEbykzuxudrPepNpaKNhDPYdNMiuRpKm77aH_3pTGepqBed8w8xi7RRgjgnlazZdjDsjHnKPi2pyxIRqJMYDk510PiY41SjNgVyF8A6BMUF2yARcAKU_4kMl5Y78ofq2cI0_rgqKlp7IqtlW7fo6mvm2imbf7UNiaom0bTdq69dfswtk60E1fR-xz-raavMeLj9l88rKICyHNNra5cJBLKFMERShyMmVpTaqdklyjQtddYUlJzHNCjSmUmmNqnDVJlxJixB6Peze-_dlR2GZNFQqqa7umdhcy5FokoCXIDoUjWvg2BE8u2_iqsX6fIWQHV1nnKju4ynpXXeS-377LGypPgT85HfDQA_bwv_N2XVThn1NpIoxQHXd35CoiOo2VAJ0qLn4B0Eh3kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273507404</pqid></control><display><type>article</type><title>Image-Difference Prediction: From Grayscale to Color</title><source>IEEE Electronic Library (IEL)</source><creator>Lissner, I. ; Preiss, J. ; Urban, P. ; Lichtenauer, M. S. ; Zolliker, P.</creator><creatorcontrib>Lissner, I. ; Preiss, J. ; Urban, P. ; Lichtenauer, M. S. ; Zolliker, P.</creatorcontrib><description>Existing image-difference measures show excellent accuracy in predicting distortions, such as lossy compression, noise, and blur. Their performance on certain other distortions could be improved; one example of this is gamut mapping. This is partly because they either do not interpret chromatic information correctly or they ignore it entirely. We present an image-difference framework that comprises image normalization, feature extraction, and feature combination. Based on this framework, we create image-difference measures by selecting specific implementations for each of the steps. Particular emphasis is placed on using color information to improve the assessment of gamut-mapped images. Our best image-difference measure shows significantly higher prediction accuracy on a gamut-mapping dataset than all other evaluated measures.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2216279</identifier><identifier>PMID: 23008252</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Adaptation models ; Applied sciences ; Color ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Feature extraction ; Image color analysis ; image difference ; Image processing ; image quality ; Indexes ; Information theory ; Information, signal and communications theory ; Observers ; Predictive models ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2013-02, Vol.22 (2), p.435-446</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ab3f0b40d8106e13be9dda987f6427161f008ae641bbe17180d72189fa9540d33</citedby><cites>FETCH-LOGICAL-c349t-ab3f0b40d8106e13be9dda987f6427161f008ae641bbe17180d72189fa9540d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6307862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6307862$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26853936$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23008252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lissner, I.</creatorcontrib><creatorcontrib>Preiss, J.</creatorcontrib><creatorcontrib>Urban, P.</creatorcontrib><creatorcontrib>Lichtenauer, M. S.</creatorcontrib><creatorcontrib>Zolliker, P.</creatorcontrib><title>Image-Difference Prediction: From Grayscale to Color</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Existing image-difference measures show excellent accuracy in predicting distortions, such as lossy compression, noise, and blur. Their performance on certain other distortions could be improved; one example of this is gamut mapping. This is partly because they either do not interpret chromatic information correctly or they ignore it entirely. We present an image-difference framework that comprises image normalization, feature extraction, and feature combination. Based on this framework, we create image-difference measures by selecting specific implementations for each of the steps. Particular emphasis is placed on using color information to improve the assessment of gamut-mapped images. Our best image-difference measure shows significantly higher prediction accuracy on a gamut-mapping dataset than all other evaluated measures.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Applied sciences</subject><subject>Color</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>image difference</subject><subject>Image processing</subject><subject>image quality</subject><subject>Indexes</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Observers</subject><subject>Predictive models</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkEFLw0AQRhdRbK3eBUFyEbykzuxudrPepNpaKNhDPYdNMiuRpKm77aH_3pTGepqBed8w8xi7RRgjgnlazZdjDsjHnKPi2pyxIRqJMYDk510PiY41SjNgVyF8A6BMUF2yARcAKU_4kMl5Y78ofq2cI0_rgqKlp7IqtlW7fo6mvm2imbf7UNiaom0bTdq69dfswtk60E1fR-xz-raavMeLj9l88rKICyHNNra5cJBLKFMERShyMmVpTaqdklyjQtddYUlJzHNCjSmUmmNqnDVJlxJixB6Peze-_dlR2GZNFQqqa7umdhcy5FokoCXIDoUjWvg2BE8u2_iqsX6fIWQHV1nnKju4ynpXXeS-377LGypPgT85HfDQA_bwv_N2XVThn1NpIoxQHXd35CoiOo2VAJ0qLn4B0Eh3kw</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Lissner, I.</creator><creator>Preiss, J.</creator><creator>Urban, P.</creator><creator>Lichtenauer, M. S.</creator><creator>Zolliker, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130201</creationdate><title>Image-Difference Prediction: From Grayscale to Color</title><author>Lissner, I. ; Preiss, J. ; Urban, P. ; Lichtenauer, M. S. ; Zolliker, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ab3f0b40d8106e13be9dda987f6427161f008ae641bbe17180d72189fa9540d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Applied sciences</topic><topic>Color</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>image difference</topic><topic>Image processing</topic><topic>image quality</topic><topic>Indexes</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Observers</topic><topic>Predictive models</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lissner, I.</creatorcontrib><creatorcontrib>Preiss, J.</creatorcontrib><creatorcontrib>Urban, P.</creatorcontrib><creatorcontrib>Lichtenauer, M. S.</creatorcontrib><creatorcontrib>Zolliker, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lissner, I.</au><au>Preiss, J.</au><au>Urban, P.</au><au>Lichtenauer, M. S.</au><au>Zolliker, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-Difference Prediction: From Grayscale to Color</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>22</volume><issue>2</issue><spage>435</spage><epage>446</epage><pages>435-446</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Existing image-difference measures show excellent accuracy in predicting distortions, such as lossy compression, noise, and blur. Their performance on certain other distortions could be improved; one example of this is gamut mapping. This is partly because they either do not interpret chromatic information correctly or they ignore it entirely. We present an image-difference framework that comprises image normalization, feature extraction, and feature combination. Based on this framework, we create image-difference measures by selecting specific implementations for each of the steps. Particular emphasis is placed on using color information to improve the assessment of gamut-mapped images. Our best image-difference measure shows significantly higher prediction accuracy on a gamut-mapping dataset than all other evaluated measures.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23008252</pmid><doi>10.1109/TIP.2012.2216279</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2013-02, Vol.22 (2), p.435-446
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1273507404
source IEEE Electronic Library (IEL)
subjects Accuracy
Adaptation models
Applied sciences
Color
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Feature extraction
Image color analysis
image difference
Image processing
image quality
Indexes
Information theory
Information, signal and communications theory
Observers
Predictive models
Signal and communications theory
Signal processing
Signal, noise
Telecommunications and information theory
title Image-Difference Prediction: From Grayscale to Color
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-Difference%20Prediction:%20From%20Grayscale%20to%20Color&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lissner,%20I.&rft.date=2013-02-01&rft.volume=22&rft.issue=2&rft.spage=435&rft.epage=446&rft.pages=435-446&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2216279&rft_dat=%3Cproquest_RIE%3E1273507404%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273507404&rft_id=info:pmid/23008252&rft_ieee_id=6307862&rfr_iscdi=true