HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)
The Arctic springtail, Megaphorura arctica, survives sub‐zero temperatures in a dehydrated state via trehalose‐dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure o...
Gespeichert in:
Veröffentlicht in: | Archives of insect biochemistry and physiology 2013-02, Vol.82 (2), p.59-70 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 2 |
container_start_page | 59 |
container_title | Archives of insect biochemistry and physiology |
container_volume | 82 |
creator | Grubor-Lajšić, Gordana Petri, Edward T. Kojić, Danijela Purać, Jelena Popović, Željko D. Worland, Roger M. Clark, Melody S. Mojović, Miloš Blagojević, Duško P. |
description | The Arctic springtail, Megaphorura arctica, survives sub‐zero temperatures in a dehydrated state via trehalose‐dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H2O2), or dehydration, is well documented. In this respect, we measured the amount of H2O2 and antioxidant enzyme activities (superoxide dismutases: copper, zinc—CuZnSOD and manganese containing–MnSOD, and catalase—CAT), as the regulatory components determining H2O2 concentrations, in Arctic springtails incubated at 5 °C (control) versus −2 °C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone—20‐hydroxyecdysone (20‐HE). Significantly elevated H2O2 and 20‐HE levels were observed in M. arctica incubated at −2 °C, supporting a link between ecdysone, H2O2, and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at −2 °C versus 5 °C, suggesting reduced H2O2 breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 °C (controls) versus −2 °C by Electron Paramagnetic Resonance spectroscopy revealed melanin‐derived free radicals at −2 °C, perhaps an additional source of H2O2. Our results suggest that H2O2 and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis. |
doi_str_mv | 10.1002/arch.21073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273349988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273349988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3953-9fb104e2ad0753e992bddfb7a6e868f844e1dc0e7b7011da1d9a887f3b514d843</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotOBDQ-ALLEpSCn-yx-7kLhJ1ExcpSmQleUkDk2ZaabORFDx8mSYtgsWrHxlfee7VzoAvMHoFCNEPirTXJ8SjFz6DCywTZDlUOI-B4v5x7cYc8gROB7HG4SQ72DvJTgiFDPqE7QAv5MqKkTMc3jBC_EtjTgM8gjyMKouRc5hmsMy4TAsKnFRiJKHZfqFw4jvY0GZihxelvPA4wqKM7jS39X2ejCTUTAwza5vFDwReRUm6VWRRgH_BEORZXz1WWTB-1fgRafWo3798C7B1Rkvw8TKRJyGQWY11Lep5Xc1RkwT1SLXptr3Sd22Xe0qR3uO13mMadw2SLu1izBuFW595XluR2sbs9ZjdAlODt6tGe4mPe7kph8bvV6rWz1Mo8TEpZT5vufN6Lt_0JthMrfzdRIzxyaM4Jldgg8HqjHDOBrdya3pN8rcS4zkvhK5r0T-rWSG3z4op3qj2yf0sYMZwAfgZ7_W9_9RyaAIk0epdcj0407_esoo80M6LnVt-TWP5Xl-7pAwXs2r_gAw0pwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465242173</pqid></control><display><type>article</type><title>HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Grubor-Lajšić, Gordana ; Petri, Edward T. ; Kojić, Danijela ; Purać, Jelena ; Popović, Željko D. ; Worland, Roger M. ; Clark, Melody S. ; Mojović, Miloš ; Blagojević, Duško P.</creator><creatorcontrib>Grubor-Lajšić, Gordana ; Petri, Edward T. ; Kojić, Danijela ; Purać, Jelena ; Popović, Željko D. ; Worland, Roger M. ; Clark, Melody S. ; Mojović, Miloš ; Blagojević, Duško P.</creatorcontrib><description>The Arctic springtail, Megaphorura arctica, survives sub‐zero temperatures in a dehydrated state via trehalose‐dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H2O2), or dehydration, is well documented. In this respect, we measured the amount of H2O2 and antioxidant enzyme activities (superoxide dismutases: copper, zinc—CuZnSOD and manganese containing–MnSOD, and catalase—CAT), as the regulatory components determining H2O2 concentrations, in Arctic springtails incubated at 5 °C (control) versus −2 °C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone—20‐hydroxyecdysone (20‐HE). Significantly elevated H2O2 and 20‐HE levels were observed in M. arctica incubated at −2 °C, supporting a link between ecdysone, H2O2, and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at −2 °C versus 5 °C, suggesting reduced H2O2 breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 °C (controls) versus −2 °C by Electron Paramagnetic Resonance spectroscopy revealed melanin‐derived free radicals at −2 °C, perhaps an additional source of H2O2. Our results suggest that H2O2 and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis.</description><identifier>ISSN: 0739-4462</identifier><identifier>EISSN: 1520-6327</identifier><identifier>DOI: 10.1002/arch.21073</identifier><identifier>PMID: 23143920</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Arctic Regions ; Arctic springtail ; Arthropods - physiology ; catalase ; Catalase - metabolism ; Cold Temperature ; cryoprotective dehydration ; Desiccation ; ecdysone ; Ecdysterone - metabolism ; Electron Spin Resonance Spectroscopy ; free radicals ; Free Radicals - metabolism ; free radicals, catalase ; H2O2 ; Hydrogen Peroxide - metabolism ; Insect Proteins - metabolism ; Superoxide Dismutase - metabolism ; Svalbard ; Trehalose - metabolism</subject><ispartof>Archives of insect biochemistry and physiology, 2013-02, Vol.82 (2), p.59-70</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3953-9fb104e2ad0753e992bddfb7a6e868f844e1dc0e7b7011da1d9a887f3b514d843</citedby><cites>FETCH-LOGICAL-c3953-9fb104e2ad0753e992bddfb7a6e868f844e1dc0e7b7011da1d9a887f3b514d843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Farch.21073$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Farch.21073$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23143920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grubor-Lajšić, Gordana</creatorcontrib><creatorcontrib>Petri, Edward T.</creatorcontrib><creatorcontrib>Kojić, Danijela</creatorcontrib><creatorcontrib>Purać, Jelena</creatorcontrib><creatorcontrib>Popović, Željko D.</creatorcontrib><creatorcontrib>Worland, Roger M.</creatorcontrib><creatorcontrib>Clark, Melody S.</creatorcontrib><creatorcontrib>Mojović, Miloš</creatorcontrib><creatorcontrib>Blagojević, Duško P.</creatorcontrib><title>HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)</title><title>Archives of insect biochemistry and physiology</title><addtitle>Arch. Insect Biochem. Physiol</addtitle><description>The Arctic springtail, Megaphorura arctica, survives sub‐zero temperatures in a dehydrated state via trehalose‐dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H2O2), or dehydration, is well documented. In this respect, we measured the amount of H2O2 and antioxidant enzyme activities (superoxide dismutases: copper, zinc—CuZnSOD and manganese containing–MnSOD, and catalase—CAT), as the regulatory components determining H2O2 concentrations, in Arctic springtails incubated at 5 °C (control) versus −2 °C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone—20‐hydroxyecdysone (20‐HE). Significantly elevated H2O2 and 20‐HE levels were observed in M. arctica incubated at −2 °C, supporting a link between ecdysone, H2O2, and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at −2 °C versus 5 °C, suggesting reduced H2O2 breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 °C (controls) versus −2 °C by Electron Paramagnetic Resonance spectroscopy revealed melanin‐derived free radicals at −2 °C, perhaps an additional source of H2O2. Our results suggest that H2O2 and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis.</description><subject>Animals</subject><subject>Arctic Regions</subject><subject>Arctic springtail</subject><subject>Arthropods - physiology</subject><subject>catalase</subject><subject>Catalase - metabolism</subject><subject>Cold Temperature</subject><subject>cryoprotective dehydration</subject><subject>Desiccation</subject><subject>ecdysone</subject><subject>Ecdysterone - metabolism</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>free radicals</subject><subject>Free Radicals - metabolism</subject><subject>free radicals, catalase</subject><subject>H2O2</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Insect Proteins - metabolism</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Svalbard</subject><subject>Trehalose - metabolism</subject><issn>0739-4462</issn><issn>1520-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EotOBDQ-ALLEpSCn-yx-7kLhJ1ExcpSmQleUkDk2ZaabORFDx8mSYtgsWrHxlfee7VzoAvMHoFCNEPirTXJ8SjFz6DCywTZDlUOI-B4v5x7cYc8gROB7HG4SQ72DvJTgiFDPqE7QAv5MqKkTMc3jBC_EtjTgM8gjyMKouRc5hmsMy4TAsKnFRiJKHZfqFw4jvY0GZihxelvPA4wqKM7jS39X2ejCTUTAwza5vFDwReRUm6VWRRgH_BEORZXz1WWTB-1fgRafWo3798C7B1Rkvw8TKRJyGQWY11Lep5Xc1RkwT1SLXptr3Sd22Xe0qR3uO13mMadw2SLu1izBuFW595XluR2sbs9ZjdAlODt6tGe4mPe7kph8bvV6rWz1Mo8TEpZT5vufN6Lt_0JthMrfzdRIzxyaM4Jldgg8HqjHDOBrdya3pN8rcS4zkvhK5r0T-rWSG3z4op3qj2yf0sYMZwAfgZ7_W9_9RyaAIk0epdcj0407_esoo80M6LnVt-TWP5Xl-7pAwXs2r_gAw0pwE</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Grubor-Lajšić, Gordana</creator><creator>Petri, Edward T.</creator><creator>Kojić, Danijela</creator><creator>Purać, Jelena</creator><creator>Popović, Željko D.</creator><creator>Worland, Roger M.</creator><creator>Clark, Melody S.</creator><creator>Mojović, Miloš</creator><creator>Blagojević, Duško P.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201302</creationdate><title>HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)</title><author>Grubor-Lajšić, Gordana ; Petri, Edward T. ; Kojić, Danijela ; Purać, Jelena ; Popović, Željko D. ; Worland, Roger M. ; Clark, Melody S. ; Mojović, Miloš ; Blagojević, Duško P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3953-9fb104e2ad0753e992bddfb7a6e868f844e1dc0e7b7011da1d9a887f3b514d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Arctic Regions</topic><topic>Arctic springtail</topic><topic>Arthropods - physiology</topic><topic>catalase</topic><topic>Catalase - metabolism</topic><topic>Cold Temperature</topic><topic>cryoprotective dehydration</topic><topic>Desiccation</topic><topic>ecdysone</topic><topic>Ecdysterone - metabolism</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>free radicals</topic><topic>Free Radicals - metabolism</topic><topic>free radicals, catalase</topic><topic>H2O2</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Insect Proteins - metabolism</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Svalbard</topic><topic>Trehalose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grubor-Lajšić, Gordana</creatorcontrib><creatorcontrib>Petri, Edward T.</creatorcontrib><creatorcontrib>Kojić, Danijela</creatorcontrib><creatorcontrib>Purać, Jelena</creatorcontrib><creatorcontrib>Popović, Željko D.</creatorcontrib><creatorcontrib>Worland, Roger M.</creatorcontrib><creatorcontrib>Clark, Melody S.</creatorcontrib><creatorcontrib>Mojović, Miloš</creatorcontrib><creatorcontrib>Blagojević, Duško P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of insect biochemistry and physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grubor-Lajšić, Gordana</au><au>Petri, Edward T.</au><au>Kojić, Danijela</au><au>Purać, Jelena</au><au>Popović, Željko D.</au><au>Worland, Roger M.</au><au>Clark, Melody S.</au><au>Mojović, Miloš</au><au>Blagojević, Duško P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)</atitle><jtitle>Archives of insect biochemistry and physiology</jtitle><addtitle>Arch. Insect Biochem. Physiol</addtitle><date>2013-02</date><risdate>2013</risdate><volume>82</volume><issue>2</issue><spage>59</spage><epage>70</epage><pages>59-70</pages><issn>0739-4462</issn><eissn>1520-6327</eissn><abstract>The Arctic springtail, Megaphorura arctica, survives sub‐zero temperatures in a dehydrated state via trehalose‐dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H2O2), or dehydration, is well documented. In this respect, we measured the amount of H2O2 and antioxidant enzyme activities (superoxide dismutases: copper, zinc—CuZnSOD and manganese containing–MnSOD, and catalase—CAT), as the regulatory components determining H2O2 concentrations, in Arctic springtails incubated at 5 °C (control) versus −2 °C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone—20‐hydroxyecdysone (20‐HE). Significantly elevated H2O2 and 20‐HE levels were observed in M. arctica incubated at −2 °C, supporting a link between ecdysone, H2O2, and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at −2 °C versus 5 °C, suggesting reduced H2O2 breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 °C (controls) versus −2 °C by Electron Paramagnetic Resonance spectroscopy revealed melanin‐derived free radicals at −2 °C, perhaps an additional source of H2O2. Our results suggest that H2O2 and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23143920</pmid><doi>10.1002/arch.21073</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-4462 |
ispartof | Archives of insect biochemistry and physiology, 2013-02, Vol.82 (2), p.59-70 |
issn | 0739-4462 1520-6327 |
language | eng |
recordid | cdi_proquest_miscellaneous_1273349988 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Animals Arctic Regions Arctic springtail Arthropods - physiology catalase Catalase - metabolism Cold Temperature cryoprotective dehydration Desiccation ecdysone Ecdysterone - metabolism Electron Spin Resonance Spectroscopy free radicals Free Radicals - metabolism free radicals, catalase H2O2 Hydrogen Peroxide - metabolism Insect Proteins - metabolism Superoxide Dismutase - metabolism Svalbard Trehalose - metabolism |
title | HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HYDROGEN%20PEROXIDE%20AND%20ECDYSONE%20IN%20THE%20CRYOPROTECTIVE%20DEHYDRATION%20STRATEGY%20OF%20Megaphorura%20Arctica%20(ONYCHIURIDAE:%20COLLEMBOLA)&rft.jtitle=Archives%20of%20insect%20biochemistry%20and%20physiology&rft.au=Grubor-Laj%C5%A1i%C4%87,%20Gordana&rft.date=2013-02&rft.volume=82&rft.issue=2&rft.spage=59&rft.epage=70&rft.pages=59-70&rft.issn=0739-4462&rft.eissn=1520-6327&rft_id=info:doi/10.1002/arch.21073&rft_dat=%3Cproquest_cross%3E1273349988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465242173&rft_id=info:pmid/23143920&rfr_iscdi=true |