HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)

The Arctic springtail, Megaphorura arctica, survives sub‐zero temperatures in a dehydrated state via trehalose‐dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of insect biochemistry and physiology 2013-02, Vol.82 (2), p.59-70
Hauptverfasser: Grubor-Lajšić, Gordana, Petri, Edward T., Kojić, Danijela, Purać, Jelena, Popović, Željko D., Worland, Roger M., Clark, Melody S., Mojović, Miloš, Blagojević, Duško P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 2
container_start_page 59
container_title Archives of insect biochemistry and physiology
container_volume 82
creator Grubor-Lajšić, Gordana
Petri, Edward T.
Kojić, Danijela
Purać, Jelena
Popović, Željko D.
Worland, Roger M.
Clark, Melody S.
Mojović, Miloš
Blagojević, Duško P.
description The Arctic springtail, Megaphorura arctica, survives sub‐zero temperatures in a dehydrated state via trehalose‐dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H2O2), or dehydration, is well documented. In this respect, we measured the amount of H2O2 and antioxidant enzyme activities (superoxide dismutases: copper, zinc—CuZnSOD and manganese containing–MnSOD, and catalase—CAT), as the regulatory components determining H2O2 concentrations, in Arctic springtails incubated at 5 °C (control) versus −2 °C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone—20‐hydroxyecdysone (20‐HE). Significantly elevated H2O2 and 20‐HE levels were observed in M. arctica incubated at −2 °C, supporting a link between ecdysone, H2O2, and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at −2 °C versus 5 °C, suggesting reduced H2O2 breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 °C (controls) versus −2 °C by Electron Paramagnetic Resonance spectroscopy revealed melanin‐derived free radicals at −2 °C, perhaps an additional source of H2O2. Our results suggest that H2O2 and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis.
doi_str_mv 10.1002/arch.21073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273349988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273349988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3953-9fb104e2ad0753e992bddfb7a6e868f844e1dc0e7b7011da1d9a887f3b514d843</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotOBDQ-ALLEpSCn-yx-7kLhJ1ExcpSmQleUkDk2ZaabORFDx8mSYtgsWrHxlfee7VzoAvMHoFCNEPirTXJ8SjFz6DCywTZDlUOI-B4v5x7cYc8gROB7HG4SQ72DvJTgiFDPqE7QAv5MqKkTMc3jBC_EtjTgM8gjyMKouRc5hmsMy4TAsKnFRiJKHZfqFw4jvY0GZihxelvPA4wqKM7jS39X2ejCTUTAwza5vFDwReRUm6VWRRgH_BEORZXz1WWTB-1fgRafWo3798C7B1Rkvw8TKRJyGQWY11Lep5Xc1RkwT1SLXptr3Sd22Xe0qR3uO13mMadw2SLu1izBuFW595XluR2sbs9ZjdAlODt6tGe4mPe7kph8bvV6rWz1Mo8TEpZT5vufN6Lt_0JthMrfzdRIzxyaM4Jldgg8HqjHDOBrdya3pN8rcS4zkvhK5r0T-rWSG3z4op3qj2yf0sYMZwAfgZ7_W9_9RyaAIk0epdcj0407_esoo80M6LnVt-TWP5Xl-7pAwXs2r_gAw0pwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465242173</pqid></control><display><type>article</type><title>HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Grubor-Lajšić, Gordana ; Petri, Edward T. ; Kojić, Danijela ; Purać, Jelena ; Popović, Željko D. ; Worland, Roger M. ; Clark, Melody S. ; Mojović, Miloš ; Blagojević, Duško P.</creator><creatorcontrib>Grubor-Lajšić, Gordana ; Petri, Edward T. ; Kojić, Danijela ; Purać, Jelena ; Popović, Željko D. ; Worland, Roger M. ; Clark, Melody S. ; Mojović, Miloš ; Blagojević, Duško P.</creatorcontrib><description>The Arctic springtail, Megaphorura arctica, survives sub‐zero temperatures in a dehydrated state via trehalose‐dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H2O2), or dehydration, is well documented. In this respect, we measured the amount of H2O2 and antioxidant enzyme activities (superoxide dismutases: copper, zinc—CuZnSOD and manganese containing–MnSOD, and catalase—CAT), as the regulatory components determining H2O2 concentrations, in Arctic springtails incubated at 5 °C (control) versus −2 °C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone—20‐hydroxyecdysone (20‐HE). Significantly elevated H2O2 and 20‐HE levels were observed in M. arctica incubated at −2 °C, supporting a link between ecdysone, H2O2, and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at −2 °C versus 5 °C, suggesting reduced H2O2 breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 °C (controls) versus −2 °C by Electron Paramagnetic Resonance spectroscopy revealed melanin‐derived free radicals at −2 °C, perhaps an additional source of H2O2. Our results suggest that H2O2 and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis.</description><identifier>ISSN: 0739-4462</identifier><identifier>EISSN: 1520-6327</identifier><identifier>DOI: 10.1002/arch.21073</identifier><identifier>PMID: 23143920</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Arctic Regions ; Arctic springtail ; Arthropods - physiology ; catalase ; Catalase - metabolism ; Cold Temperature ; cryoprotective dehydration ; Desiccation ; ecdysone ; Ecdysterone - metabolism ; Electron Spin Resonance Spectroscopy ; free radicals ; Free Radicals - metabolism ; free radicals, catalase ; H2O2 ; Hydrogen Peroxide - metabolism ; Insect Proteins - metabolism ; Superoxide Dismutase - metabolism ; Svalbard ; Trehalose - metabolism</subject><ispartof>Archives of insect biochemistry and physiology, 2013-02, Vol.82 (2), p.59-70</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3953-9fb104e2ad0753e992bddfb7a6e868f844e1dc0e7b7011da1d9a887f3b514d843</citedby><cites>FETCH-LOGICAL-c3953-9fb104e2ad0753e992bddfb7a6e868f844e1dc0e7b7011da1d9a887f3b514d843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Farch.21073$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Farch.21073$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23143920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grubor-Lajšić, Gordana</creatorcontrib><creatorcontrib>Petri, Edward T.</creatorcontrib><creatorcontrib>Kojić, Danijela</creatorcontrib><creatorcontrib>Purać, Jelena</creatorcontrib><creatorcontrib>Popović, Željko D.</creatorcontrib><creatorcontrib>Worland, Roger M.</creatorcontrib><creatorcontrib>Clark, Melody S.</creatorcontrib><creatorcontrib>Mojović, Miloš</creatorcontrib><creatorcontrib>Blagojević, Duško P.</creatorcontrib><title>HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)</title><title>Archives of insect biochemistry and physiology</title><addtitle>Arch. Insect Biochem. Physiol</addtitle><description>The Arctic springtail, Megaphorura arctica, survives sub‐zero temperatures in a dehydrated state via trehalose‐dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H2O2), or dehydration, is well documented. In this respect, we measured the amount of H2O2 and antioxidant enzyme activities (superoxide dismutases: copper, zinc—CuZnSOD and manganese containing–MnSOD, and catalase—CAT), as the regulatory components determining H2O2 concentrations, in Arctic springtails incubated at 5 °C (control) versus −2 °C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone—20‐hydroxyecdysone (20‐HE). Significantly elevated H2O2 and 20‐HE levels were observed in M. arctica incubated at −2 °C, supporting a link between ecdysone, H2O2, and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at −2 °C versus 5 °C, suggesting reduced H2O2 breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 °C (controls) versus −2 °C by Electron Paramagnetic Resonance spectroscopy revealed melanin‐derived free radicals at −2 °C, perhaps an additional source of H2O2. Our results suggest that H2O2 and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis.</description><subject>Animals</subject><subject>Arctic Regions</subject><subject>Arctic springtail</subject><subject>Arthropods - physiology</subject><subject>catalase</subject><subject>Catalase - metabolism</subject><subject>Cold Temperature</subject><subject>cryoprotective dehydration</subject><subject>Desiccation</subject><subject>ecdysone</subject><subject>Ecdysterone - metabolism</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>free radicals</subject><subject>Free Radicals - metabolism</subject><subject>free radicals, catalase</subject><subject>H2O2</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Insect Proteins - metabolism</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Svalbard</subject><subject>Trehalose - metabolism</subject><issn>0739-4462</issn><issn>1520-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EotOBDQ-ALLEpSCn-yx-7kLhJ1ExcpSmQleUkDk2ZaabORFDx8mSYtgsWrHxlfee7VzoAvMHoFCNEPirTXJ8SjFz6DCywTZDlUOI-B4v5x7cYc8gROB7HG4SQ72DvJTgiFDPqE7QAv5MqKkTMc3jBC_EtjTgM8gjyMKouRc5hmsMy4TAsKnFRiJKHZfqFw4jvY0GZihxelvPA4wqKM7jS39X2ejCTUTAwza5vFDwReRUm6VWRRgH_BEORZXz1WWTB-1fgRafWo3798C7B1Rkvw8TKRJyGQWY11Lep5Xc1RkwT1SLXptr3Sd22Xe0qR3uO13mMadw2SLu1izBuFW595XluR2sbs9ZjdAlODt6tGe4mPe7kph8bvV6rWz1Mo8TEpZT5vufN6Lt_0JthMrfzdRIzxyaM4Jldgg8HqjHDOBrdya3pN8rcS4zkvhK5r0T-rWSG3z4op3qj2yf0sYMZwAfgZ7_W9_9RyaAIk0epdcj0407_esoo80M6LnVt-TWP5Xl-7pAwXs2r_gAw0pwE</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Grubor-Lajšić, Gordana</creator><creator>Petri, Edward T.</creator><creator>Kojić, Danijela</creator><creator>Purać, Jelena</creator><creator>Popović, Željko D.</creator><creator>Worland, Roger M.</creator><creator>Clark, Melody S.</creator><creator>Mojović, Miloš</creator><creator>Blagojević, Duško P.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201302</creationdate><title>HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)</title><author>Grubor-Lajšić, Gordana ; Petri, Edward T. ; Kojić, Danijela ; Purać, Jelena ; Popović, Željko D. ; Worland, Roger M. ; Clark, Melody S. ; Mojović, Miloš ; Blagojević, Duško P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3953-9fb104e2ad0753e992bddfb7a6e868f844e1dc0e7b7011da1d9a887f3b514d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Arctic Regions</topic><topic>Arctic springtail</topic><topic>Arthropods - physiology</topic><topic>catalase</topic><topic>Catalase - metabolism</topic><topic>Cold Temperature</topic><topic>cryoprotective dehydration</topic><topic>Desiccation</topic><topic>ecdysone</topic><topic>Ecdysterone - metabolism</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>free radicals</topic><topic>Free Radicals - metabolism</topic><topic>free radicals, catalase</topic><topic>H2O2</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Insect Proteins - metabolism</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Svalbard</topic><topic>Trehalose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grubor-Lajšić, Gordana</creatorcontrib><creatorcontrib>Petri, Edward T.</creatorcontrib><creatorcontrib>Kojić, Danijela</creatorcontrib><creatorcontrib>Purać, Jelena</creatorcontrib><creatorcontrib>Popović, Željko D.</creatorcontrib><creatorcontrib>Worland, Roger M.</creatorcontrib><creatorcontrib>Clark, Melody S.</creatorcontrib><creatorcontrib>Mojović, Miloš</creatorcontrib><creatorcontrib>Blagojević, Duško P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of insect biochemistry and physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grubor-Lajšić, Gordana</au><au>Petri, Edward T.</au><au>Kojić, Danijela</au><au>Purać, Jelena</au><au>Popović, Željko D.</au><au>Worland, Roger M.</au><au>Clark, Melody S.</au><au>Mojović, Miloš</au><au>Blagojević, Duško P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)</atitle><jtitle>Archives of insect biochemistry and physiology</jtitle><addtitle>Arch. Insect Biochem. Physiol</addtitle><date>2013-02</date><risdate>2013</risdate><volume>82</volume><issue>2</issue><spage>59</spage><epage>70</epage><pages>59-70</pages><issn>0739-4462</issn><eissn>1520-6327</eissn><abstract>The Arctic springtail, Megaphorura arctica, survives sub‐zero temperatures in a dehydrated state via trehalose‐dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H2O2), or dehydration, is well documented. In this respect, we measured the amount of H2O2 and antioxidant enzyme activities (superoxide dismutases: copper, zinc—CuZnSOD and manganese containing–MnSOD, and catalase—CAT), as the regulatory components determining H2O2 concentrations, in Arctic springtails incubated at 5 °C (control) versus −2 °C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone—20‐hydroxyecdysone (20‐HE). Significantly elevated H2O2 and 20‐HE levels were observed in M. arctica incubated at −2 °C, supporting a link between ecdysone, H2O2, and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at −2 °C versus 5 °C, suggesting reduced H2O2 breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 °C (controls) versus −2 °C by Electron Paramagnetic Resonance spectroscopy revealed melanin‐derived free radicals at −2 °C, perhaps an additional source of H2O2. Our results suggest that H2O2 and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23143920</pmid><doi>10.1002/arch.21073</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0739-4462
ispartof Archives of insect biochemistry and physiology, 2013-02, Vol.82 (2), p.59-70
issn 0739-4462
1520-6327
language eng
recordid cdi_proquest_miscellaneous_1273349988
source MEDLINE; Wiley Online Library All Journals
subjects Animals
Arctic Regions
Arctic springtail
Arthropods - physiology
catalase
Catalase - metabolism
Cold Temperature
cryoprotective dehydration
Desiccation
ecdysone
Ecdysterone - metabolism
Electron Spin Resonance Spectroscopy
free radicals
Free Radicals - metabolism
free radicals, catalase
H2O2
Hydrogen Peroxide - metabolism
Insect Proteins - metabolism
Superoxide Dismutase - metabolism
Svalbard
Trehalose - metabolism
title HYDROGEN PEROXIDE AND ECDYSONE IN THE CRYOPROTECTIVE DEHYDRATION STRATEGY OF Megaphorura Arctica (ONYCHIURIDAE: COLLEMBOLA)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HYDROGEN%20PEROXIDE%20AND%20ECDYSONE%20IN%20THE%20CRYOPROTECTIVE%20DEHYDRATION%20STRATEGY%20OF%20Megaphorura%20Arctica%20(ONYCHIURIDAE:%20COLLEMBOLA)&rft.jtitle=Archives%20of%20insect%20biochemistry%20and%20physiology&rft.au=Grubor-Laj%C5%A1i%C4%87,%20Gordana&rft.date=2013-02&rft.volume=82&rft.issue=2&rft.spage=59&rft.epage=70&rft.pages=59-70&rft.issn=0739-4462&rft.eissn=1520-6327&rft_id=info:doi/10.1002/arch.21073&rft_dat=%3Cproquest_cross%3E1273349988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465242173&rft_id=info:pmid/23143920&rfr_iscdi=true