Nanoscale Interfacial Friction and Adhesion on Supported versus Suspended Monolayer and Multilayer Graphene

Using atomic force microscopy (AFM), supported by semicontinuum numerical simulations, we determine the effect of tip–subsurface van der Waals interactions on nanoscale friction and adhesion for suspended and silicon dioxide supported graphene of varying thickness. While pull-off force measurements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2013-01, Vol.29 (1), p.235-243
Hauptverfasser: Deng, Zhao, Klimov, Nikolai N, Solares, Santiago D, Li, Teng, Xu, Hua, Cannara, Rachel J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 1
container_start_page 235
container_title Langmuir
container_volume 29
creator Deng, Zhao
Klimov, Nikolai N
Solares, Santiago D
Li, Teng
Xu, Hua
Cannara, Rachel J
description Using atomic force microscopy (AFM), supported by semicontinuum numerical simulations, we determine the effect of tip–subsurface van der Waals interactions on nanoscale friction and adhesion for suspended and silicon dioxide supported graphene of varying thickness. While pull-off force measurements reveal no layer number dependence for supported graphene, suspended graphene exhibits an increase in pull-off force with thickness. Further, at low applied loads, friction increases with increasing number of layers for suspended graphene, in contrast to reported trends for supported graphene. We attribute these results to a competition between local forces that determine the deformation of the surface layer, the profile of the membrane as a whole, and van der Waals forces between the AFM tip and subsurface layers. We find that friction on supported monolayer graphene can be fit using generalized continuum mechanics models, from which we extract the work of adhesion and interfacial shear strength. In addition, we show that tip–sample adhesive forces depend on interactions with subsurface material and increase in the presence of a supporting substrate or additional graphene layers.
doi_str_mv 10.1021/la304079a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273312751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273312751</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-7bdf6cbbde141082c1759cd2d3c01cc47137b1a1cfb737cefb6a34f84bbb28f13</originalsourceid><addsrcrecordid>eNptkMFO3DAQQK2qVVloD_0BlEslOKR4bCfePaIVLCtBObQ9R2N7LAJZO9gJEn9Plt1CD5VGM5rRmxnpMfYN-A_gAs46lFxxvcAPbAaV4GU1F_ojm3GtZKlVLQ_YYc73nPOFVIvP7EBIARXUcsYefmKI2WJHxToMlDzaFrviMrV2aGMoMLji3N1R3jZT_Br7PqaBXPFEKY95GuSegpsGNzHEDp8pvS7djN3Q7tpVwv6OAn1hnzx2mb7u6xH7c3nxe3lVXt-u1svz6xIVwFBq43xtjXEECvhcWNDVwjrhpOVgrdIgtQEE642W2pI3NUrl58oYI-Ye5BE72d3tU3wcKQ_Nps2Wug4DxTE3ILSUU6q26OkOtSnmnMg3fWo3mJ4b4M3WbfPmdmKP92dHsyH3Rv6VOQHf9wBujfqEwbb5ndOgagH_cGhzcx_HFCYb_3n4Aqcijr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273312751</pqid></control><display><type>article</type><title>Nanoscale Interfacial Friction and Adhesion on Supported versus Suspended Monolayer and Multilayer Graphene</title><source>ACS Publications</source><creator>Deng, Zhao ; Klimov, Nikolai N ; Solares, Santiago D ; Li, Teng ; Xu, Hua ; Cannara, Rachel J</creator><creatorcontrib>Deng, Zhao ; Klimov, Nikolai N ; Solares, Santiago D ; Li, Teng ; Xu, Hua ; Cannara, Rachel J</creatorcontrib><description>Using atomic force microscopy (AFM), supported by semicontinuum numerical simulations, we determine the effect of tip–subsurface van der Waals interactions on nanoscale friction and adhesion for suspended and silicon dioxide supported graphene of varying thickness. While pull-off force measurements reveal no layer number dependence for supported graphene, suspended graphene exhibits an increase in pull-off force with thickness. Further, at low applied loads, friction increases with increasing number of layers for suspended graphene, in contrast to reported trends for supported graphene. We attribute these results to a competition between local forces that determine the deformation of the surface layer, the profile of the membrane as a whole, and van der Waals forces between the AFM tip and subsurface layers. We find that friction on supported monolayer graphene can be fit using generalized continuum mechanics models, from which we extract the work of adhesion and interfacial shear strength. In addition, we show that tip–sample adhesive forces depend on interactions with subsurface material and increase in the presence of a supporting substrate or additional graphene layers.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la304079a</identifier><identifier>PMID: 23215163</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Surface physical chemistry</subject><ispartof>Langmuir, 2013-01, Vol.29 (1), p.235-243</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-7bdf6cbbde141082c1759cd2d3c01cc47137b1a1cfb737cefb6a34f84bbb28f13</citedby><cites>FETCH-LOGICAL-a411t-7bdf6cbbde141082c1759cd2d3c01cc47137b1a1cfb737cefb6a34f84bbb28f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la304079a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la304079a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27146213$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23215163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Zhao</creatorcontrib><creatorcontrib>Klimov, Nikolai N</creatorcontrib><creatorcontrib>Solares, Santiago D</creatorcontrib><creatorcontrib>Li, Teng</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Cannara, Rachel J</creatorcontrib><title>Nanoscale Interfacial Friction and Adhesion on Supported versus Suspended Monolayer and Multilayer Graphene</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Using atomic force microscopy (AFM), supported by semicontinuum numerical simulations, we determine the effect of tip–subsurface van der Waals interactions on nanoscale friction and adhesion for suspended and silicon dioxide supported graphene of varying thickness. While pull-off force measurements reveal no layer number dependence for supported graphene, suspended graphene exhibits an increase in pull-off force with thickness. Further, at low applied loads, friction increases with increasing number of layers for suspended graphene, in contrast to reported trends for supported graphene. We attribute these results to a competition between local forces that determine the deformation of the surface layer, the profile of the membrane as a whole, and van der Waals forces between the AFM tip and subsurface layers. We find that friction on supported monolayer graphene can be fit using generalized continuum mechanics models, from which we extract the work of adhesion and interfacial shear strength. In addition, we show that tip–sample adhesive forces depend on interactions with subsurface material and increase in the presence of a supporting substrate or additional graphene layers.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkMFO3DAQQK2qVVloD_0BlEslOKR4bCfePaIVLCtBObQ9R2N7LAJZO9gJEn9Plt1CD5VGM5rRmxnpMfYN-A_gAs46lFxxvcAPbAaV4GU1F_ojm3GtZKlVLQ_YYc73nPOFVIvP7EBIARXUcsYefmKI2WJHxToMlDzaFrviMrV2aGMoMLji3N1R3jZT_Br7PqaBXPFEKY95GuSegpsGNzHEDp8pvS7djN3Q7tpVwv6OAn1hnzx2mb7u6xH7c3nxe3lVXt-u1svz6xIVwFBq43xtjXEECvhcWNDVwjrhpOVgrdIgtQEE642W2pI3NUrl58oYI-Ye5BE72d3tU3wcKQ_Nps2Wug4DxTE3ILSUU6q26OkOtSnmnMg3fWo3mJ4b4M3WbfPmdmKP92dHsyH3Rv6VOQHf9wBujfqEwbb5ndOgagH_cGhzcx_HFCYb_3n4Aqcijr8</recordid><startdate>20130108</startdate><enddate>20130108</enddate><creator>Deng, Zhao</creator><creator>Klimov, Nikolai N</creator><creator>Solares, Santiago D</creator><creator>Li, Teng</creator><creator>Xu, Hua</creator><creator>Cannara, Rachel J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130108</creationdate><title>Nanoscale Interfacial Friction and Adhesion on Supported versus Suspended Monolayer and Multilayer Graphene</title><author>Deng, Zhao ; Klimov, Nikolai N ; Solares, Santiago D ; Li, Teng ; Xu, Hua ; Cannara, Rachel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-7bdf6cbbde141082c1759cd2d3c01cc47137b1a1cfb737cefb6a34f84bbb28f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zhao</creatorcontrib><creatorcontrib>Klimov, Nikolai N</creatorcontrib><creatorcontrib>Solares, Santiago D</creatorcontrib><creatorcontrib>Li, Teng</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Cannara, Rachel J</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zhao</au><au>Klimov, Nikolai N</au><au>Solares, Santiago D</au><au>Li, Teng</au><au>Xu, Hua</au><au>Cannara, Rachel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Interfacial Friction and Adhesion on Supported versus Suspended Monolayer and Multilayer Graphene</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-01-08</date><risdate>2013</risdate><volume>29</volume><issue>1</issue><spage>235</spage><epage>243</epage><pages>235-243</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Using atomic force microscopy (AFM), supported by semicontinuum numerical simulations, we determine the effect of tip–subsurface van der Waals interactions on nanoscale friction and adhesion for suspended and silicon dioxide supported graphene of varying thickness. While pull-off force measurements reveal no layer number dependence for supported graphene, suspended graphene exhibits an increase in pull-off force with thickness. Further, at low applied loads, friction increases with increasing number of layers for suspended graphene, in contrast to reported trends for supported graphene. We attribute these results to a competition between local forces that determine the deformation of the surface layer, the profile of the membrane as a whole, and van der Waals forces between the AFM tip and subsurface layers. We find that friction on supported monolayer graphene can be fit using generalized continuum mechanics models, from which we extract the work of adhesion and interfacial shear strength. In addition, we show that tip–sample adhesive forces depend on interactions with subsurface material and increase in the presence of a supporting substrate or additional graphene layers.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23215163</pmid><doi>10.1021/la304079a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2013-01, Vol.29 (1), p.235-243
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1273312751
source ACS Publications
subjects Chemistry
Exact sciences and technology
General and physical chemistry
Surface physical chemistry
title Nanoscale Interfacial Friction and Adhesion on Supported versus Suspended Monolayer and Multilayer Graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Interfacial%20Friction%20and%20Adhesion%20on%20Supported%20versus%20Suspended%20Monolayer%20and%20Multilayer%20Graphene&rft.jtitle=Langmuir&rft.au=Deng,%20Zhao&rft.date=2013-01-08&rft.volume=29&rft.issue=1&rft.spage=235&rft.epage=243&rft.pages=235-243&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la304079a&rft_dat=%3Cproquest_cross%3E1273312751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273312751&rft_id=info:pmid/23215163&rfr_iscdi=true