Use of proteomic methods in the analysis of human body fluids in Alzheimer research

Proteomics is the study of the entire population of proteins and peptides in an organism or a part of it, such as a cell, tissue, or fluids like cerebrospinal fluid, plasma, serum, urine, or saliva. It is widely assumed that changes in the composition of the proteome may reflect disease states and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2012-12, Vol.33 (24), p.3617-3630
Hauptverfasser: Zürbig, Petra, Jahn, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteomics is the study of the entire population of proteins and peptides in an organism or a part of it, such as a cell, tissue, or fluids like cerebrospinal fluid, plasma, serum, urine, or saliva. It is widely assumed that changes in the composition of the proteome may reflect disease states and provide clues to its origin, eventually leading to targets for new treatments. The ability to perform large‐scale proteomic studies now is based jointly on recent advances in our analytical methods. Separation techniques like CE and 2DE have developed and matured. Detection methods like MS have also improved greatly in the last 5 years. These developments have also driven the fields of bioinformatics, needed to deal with the increased data production and systems biology. All these developing methods offer specific advantages but also come with certain limitations. This review describes the different proteomic methods used in the field, their limitations, and their possible pitfalls. Based on a literature search in PubMed, we identified 112 studies that applied proteomic techniques to identify biomarkers for Alzheimer disease. This review describes the results of these studies on proteome changes in human body fluids of Alzheimer patients reviewing the most important studies. We extracted a list of 366 proteins and peptides that were identified by these studies as potential targets in Alzheimer research.
ISSN:0173-0835
1522-2683
DOI:10.1002/elps.201200360