Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation
The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2013-02, Vol.9 (2), p.5273-5279 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5279 |
---|---|
container_issue | 2 |
container_start_page | 5273 |
container_title | Acta biomaterialia |
container_volume | 9 |
creator | Du, J. Niu, X. Rahbar, N. Soboyejo, W. |
description | The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin–enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments. |
doi_str_mv | 10.1016/j.actbio.2012.08.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273250897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706112004102</els_id><sourcerecordid>1273250897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-456d497e26a9e1d6a8502b3531b6d9176d0ad6d51af0bdb191cadfd3e47ded503</originalsourceid><addsrcrecordid>eNp9kE1vFiEURonR2Fr9B0ZZupkRGL7GhYk2tZo0caFdEwYuljczwyswJv330k7t0tUlN-d5LjkIvaakp4TK94feujrF1DNCWU90Twb-BJ1SrXSnhNRP21tx1iki6Ql6UcqBkEFTpp-jE8ZG3lLiFNnPMXVxLceYwWMPa7UzXra5xtneQi4f8EUI4GrBKeD7FbbZ3cTadlsGnFZcbwC71IKutia_ufuikPJia0zrS_Qs2LnAq4d5hq6_XPw8_9pdfb_8dv7pqnNcsNpxIT0fFTBpR6BeWi0ImwYx0En6kSrpifXSC2oDmfxER-qsD34Arjx4QYYz9G7vPeb0e4NSzRKLg3m2K6StGMrUwATRo2oo31GXUykZgjnmuNh8aygxd3LNwexyzZ1cQ7RpclvszcOFbVrAP4b-2WzA2x0INhn7K8dirn-0BkEIJVrxoREfdwKaiT8RsikuwtqUNf-uGp_i___wF8tzl2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273250897</pqid></control><display><type>article</type><title>Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Du, J. ; Niu, X. ; Rahbar, N. ; Soboyejo, W.</creator><creatorcontrib>Du, J. ; Niu, X. ; Rahbar, N. ; Soboyejo, W.</creatorcontrib><description>The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin–enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2012.08.034</identifier><identifier>PMID: 22940125</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bio-inspired design ; Biocompatible Materials - pharmacology ; ceramics ; composite polymers ; deformation ; Dental Materials - pharmacology ; Dental Porcelain - pharmacology ; Elastic Modulus - drug effects ; Finite element method ; Functionally graded multilayers ; growth models ; Humans ; Materials Testing ; mechanical properties ; nanocomposites ; Nanotechnology ; Optical Imaging ; Slow crack growth ; Stress, Mechanical ; teeth ; Tooth - drug effects</subject><ispartof>Acta biomaterialia, 2013-02, Vol.9 (2), p.5273-5279</ispartof><rights>2012 Acta Materialia Inc.</rights><rights>Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-456d497e26a9e1d6a8502b3531b6d9176d0ad6d51af0bdb191cadfd3e47ded503</citedby><cites>FETCH-LOGICAL-c452t-456d497e26a9e1d6a8502b3531b6d9176d0ad6d51af0bdb191cadfd3e47ded503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2012.08.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22940125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, J.</creatorcontrib><creatorcontrib>Niu, X.</creatorcontrib><creatorcontrib>Rahbar, N.</creatorcontrib><creatorcontrib>Soboyejo, W.</creatorcontrib><title>Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin–enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.</description><subject>Bio-inspired design</subject><subject>Biocompatible Materials - pharmacology</subject><subject>ceramics</subject><subject>composite polymers</subject><subject>deformation</subject><subject>Dental Materials - pharmacology</subject><subject>Dental Porcelain - pharmacology</subject><subject>Elastic Modulus - drug effects</subject><subject>Finite element method</subject><subject>Functionally graded multilayers</subject><subject>growth models</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>mechanical properties</subject><subject>nanocomposites</subject><subject>Nanotechnology</subject><subject>Optical Imaging</subject><subject>Slow crack growth</subject><subject>Stress, Mechanical</subject><subject>teeth</subject><subject>Tooth - drug effects</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1vFiEURonR2Fr9B0ZZupkRGL7GhYk2tZo0caFdEwYuljczwyswJv330k7t0tUlN-d5LjkIvaakp4TK94feujrF1DNCWU90Twb-BJ1SrXSnhNRP21tx1iki6Ql6UcqBkEFTpp-jE8ZG3lLiFNnPMXVxLceYwWMPa7UzXra5xtneQi4f8EUI4GrBKeD7FbbZ3cTadlsGnFZcbwC71IKutia_ufuikPJia0zrS_Qs2LnAq4d5hq6_XPw8_9pdfb_8dv7pqnNcsNpxIT0fFTBpR6BeWi0ImwYx0En6kSrpifXSC2oDmfxER-qsD34Arjx4QYYz9G7vPeb0e4NSzRKLg3m2K6StGMrUwATRo2oo31GXUykZgjnmuNh8aygxd3LNwexyzZ1cQ7RpclvszcOFbVrAP4b-2WzA2x0INhn7K8dirn-0BkEIJVrxoREfdwKaiT8RsikuwtqUNf-uGp_i___wF8tzl2A</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Du, J.</creator><creator>Niu, X.</creator><creator>Rahbar, N.</creator><creator>Soboyejo, W.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130201</creationdate><title>Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation</title><author>Du, J. ; Niu, X. ; Rahbar, N. ; Soboyejo, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-456d497e26a9e1d6a8502b3531b6d9176d0ad6d51af0bdb191cadfd3e47ded503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bio-inspired design</topic><topic>Biocompatible Materials - pharmacology</topic><topic>ceramics</topic><topic>composite polymers</topic><topic>deformation</topic><topic>Dental Materials - pharmacology</topic><topic>Dental Porcelain - pharmacology</topic><topic>Elastic Modulus - drug effects</topic><topic>Finite element method</topic><topic>Functionally graded multilayers</topic><topic>growth models</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>mechanical properties</topic><topic>nanocomposites</topic><topic>Nanotechnology</topic><topic>Optical Imaging</topic><topic>Slow crack growth</topic><topic>Stress, Mechanical</topic><topic>teeth</topic><topic>Tooth - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, J.</creatorcontrib><creatorcontrib>Niu, X.</creatorcontrib><creatorcontrib>Rahbar, N.</creatorcontrib><creatorcontrib>Soboyejo, W.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, J.</au><au>Niu, X.</au><au>Rahbar, N.</au><au>Soboyejo, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>9</volume><issue>2</issue><spage>5273</spage><epage>5279</epage><pages>5273-5279</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin–enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22940125</pmid><doi>10.1016/j.actbio.2012.08.034</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2013-02, Vol.9 (2), p.5273-5279 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1273250897 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Bio-inspired design Biocompatible Materials - pharmacology ceramics composite polymers deformation Dental Materials - pharmacology Dental Porcelain - pharmacology Elastic Modulus - drug effects Finite element method Functionally graded multilayers growth models Humans Materials Testing mechanical properties nanocomposites Nanotechnology Optical Imaging Slow crack growth Stress, Mechanical teeth Tooth - drug effects |
title | Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20dental%20multilayers:%20Effects%20of%20layer%20architecture%20on%20the%20contact-induced%20deformation&rft.jtitle=Acta%20biomaterialia&rft.au=Du,%20J.&rft.date=2013-02-01&rft.volume=9&rft.issue=2&rft.spage=5273&rft.epage=5279&rft.pages=5273-5279&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2012.08.034&rft_dat=%3Cproquest_cross%3E1273250897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273250897&rft_id=info:pmid/22940125&rft_els_id=S1742706112004102&rfr_iscdi=true |