Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation

The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2013-02, Vol.9 (2), p.5273-5279
Hauptverfasser: Du, J., Niu, X., Rahbar, N., Soboyejo, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5279
container_issue 2
container_start_page 5273
container_title Acta biomaterialia
container_volume 9
creator Du, J.
Niu, X.
Rahbar, N.
Soboyejo, W.
description The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin–enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.
doi_str_mv 10.1016/j.actbio.2012.08.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273250897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706112004102</els_id><sourcerecordid>1273250897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-456d497e26a9e1d6a8502b3531b6d9176d0ad6d51af0bdb191cadfd3e47ded503</originalsourceid><addsrcrecordid>eNp9kE1vFiEURonR2Fr9B0ZZupkRGL7GhYk2tZo0caFdEwYuljczwyswJv330k7t0tUlN-d5LjkIvaakp4TK94feujrF1DNCWU90Twb-BJ1SrXSnhNRP21tx1iki6Ql6UcqBkEFTpp-jE8ZG3lLiFNnPMXVxLceYwWMPa7UzXra5xtneQi4f8EUI4GrBKeD7FbbZ3cTadlsGnFZcbwC71IKutia_ufuikPJia0zrS_Qs2LnAq4d5hq6_XPw8_9pdfb_8dv7pqnNcsNpxIT0fFTBpR6BeWi0ImwYx0En6kSrpifXSC2oDmfxER-qsD34Arjx4QYYz9G7vPeb0e4NSzRKLg3m2K6StGMrUwATRo2oo31GXUykZgjnmuNh8aygxd3LNwexyzZ1cQ7RpclvszcOFbVrAP4b-2WzA2x0INhn7K8dirn-0BkEIJVrxoREfdwKaiT8RsikuwtqUNf-uGp_i___wF8tzl2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273250897</pqid></control><display><type>article</type><title>Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Du, J. ; Niu, X. ; Rahbar, N. ; Soboyejo, W.</creator><creatorcontrib>Du, J. ; Niu, X. ; Rahbar, N. ; Soboyejo, W.</creatorcontrib><description>The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin–enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2012.08.034</identifier><identifier>PMID: 22940125</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bio-inspired design ; Biocompatible Materials - pharmacology ; ceramics ; composite polymers ; deformation ; Dental Materials - pharmacology ; Dental Porcelain - pharmacology ; Elastic Modulus - drug effects ; Finite element method ; Functionally graded multilayers ; growth models ; Humans ; Materials Testing ; mechanical properties ; nanocomposites ; Nanotechnology ; Optical Imaging ; Slow crack growth ; Stress, Mechanical ; teeth ; Tooth - drug effects</subject><ispartof>Acta biomaterialia, 2013-02, Vol.9 (2), p.5273-5279</ispartof><rights>2012 Acta Materialia Inc.</rights><rights>Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-456d497e26a9e1d6a8502b3531b6d9176d0ad6d51af0bdb191cadfd3e47ded503</citedby><cites>FETCH-LOGICAL-c452t-456d497e26a9e1d6a8502b3531b6d9176d0ad6d51af0bdb191cadfd3e47ded503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2012.08.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22940125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, J.</creatorcontrib><creatorcontrib>Niu, X.</creatorcontrib><creatorcontrib>Rahbar, N.</creatorcontrib><creatorcontrib>Soboyejo, W.</creatorcontrib><title>Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin–enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.</description><subject>Bio-inspired design</subject><subject>Biocompatible Materials - pharmacology</subject><subject>ceramics</subject><subject>composite polymers</subject><subject>deformation</subject><subject>Dental Materials - pharmacology</subject><subject>Dental Porcelain - pharmacology</subject><subject>Elastic Modulus - drug effects</subject><subject>Finite element method</subject><subject>Functionally graded multilayers</subject><subject>growth models</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>mechanical properties</subject><subject>nanocomposites</subject><subject>Nanotechnology</subject><subject>Optical Imaging</subject><subject>Slow crack growth</subject><subject>Stress, Mechanical</subject><subject>teeth</subject><subject>Tooth - drug effects</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1vFiEURonR2Fr9B0ZZupkRGL7GhYk2tZo0caFdEwYuljczwyswJv330k7t0tUlN-d5LjkIvaakp4TK94feujrF1DNCWU90Twb-BJ1SrXSnhNRP21tx1iki6Ql6UcqBkEFTpp-jE8ZG3lLiFNnPMXVxLceYwWMPa7UzXra5xtneQi4f8EUI4GrBKeD7FbbZ3cTadlsGnFZcbwC71IKutia_ufuikPJia0zrS_Qs2LnAq4d5hq6_XPw8_9pdfb_8dv7pqnNcsNpxIT0fFTBpR6BeWi0ImwYx0En6kSrpifXSC2oDmfxER-qsD34Arjx4QYYz9G7vPeb0e4NSzRKLg3m2K6StGMrUwATRo2oo31GXUykZgjnmuNh8aygxd3LNwexyzZ1cQ7RpclvszcOFbVrAP4b-2WzA2x0INhn7K8dirn-0BkEIJVrxoREfdwKaiT8RsikuwtqUNf-uGp_i___wF8tzl2A</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Du, J.</creator><creator>Niu, X.</creator><creator>Rahbar, N.</creator><creator>Soboyejo, W.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130201</creationdate><title>Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation</title><author>Du, J. ; Niu, X. ; Rahbar, N. ; Soboyejo, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-456d497e26a9e1d6a8502b3531b6d9176d0ad6d51af0bdb191cadfd3e47ded503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bio-inspired design</topic><topic>Biocompatible Materials - pharmacology</topic><topic>ceramics</topic><topic>composite polymers</topic><topic>deformation</topic><topic>Dental Materials - pharmacology</topic><topic>Dental Porcelain - pharmacology</topic><topic>Elastic Modulus - drug effects</topic><topic>Finite element method</topic><topic>Functionally graded multilayers</topic><topic>growth models</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>mechanical properties</topic><topic>nanocomposites</topic><topic>Nanotechnology</topic><topic>Optical Imaging</topic><topic>Slow crack growth</topic><topic>Stress, Mechanical</topic><topic>teeth</topic><topic>Tooth - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, J.</creatorcontrib><creatorcontrib>Niu, X.</creatorcontrib><creatorcontrib>Rahbar, N.</creatorcontrib><creatorcontrib>Soboyejo, W.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, J.</au><au>Niu, X.</au><au>Rahbar, N.</au><au>Soboyejo, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>9</volume><issue>2</issue><spage>5273</spage><epage>5279</epage><pages>5273-5279</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin–enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22940125</pmid><doi>10.1016/j.actbio.2012.08.034</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2013-02, Vol.9 (2), p.5273-5279
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1273250897
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Bio-inspired design
Biocompatible Materials - pharmacology
ceramics
composite polymers
deformation
Dental Materials - pharmacology
Dental Porcelain - pharmacology
Elastic Modulus - drug effects
Finite element method
Functionally graded multilayers
growth models
Humans
Materials Testing
mechanical properties
nanocomposites
Nanotechnology
Optical Imaging
Slow crack growth
Stress, Mechanical
teeth
Tooth - drug effects
title Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-inspired%20dental%20multilayers:%20Effects%20of%20layer%20architecture%20on%20the%20contact-induced%20deformation&rft.jtitle=Acta%20biomaterialia&rft.au=Du,%20J.&rft.date=2013-02-01&rft.volume=9&rft.issue=2&rft.spage=5273&rft.epage=5279&rft.pages=5273-5279&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2012.08.034&rft_dat=%3Cproquest_cross%3E1273250897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273250897&rft_id=info:pmid/22940125&rft_els_id=S1742706112004102&rfr_iscdi=true