Enhanced CO2 Adsorption over Polymeric Amines Supported on Heteroatom-Incorporated SBA-15 Silica: Impact of Heteroatom Type and Loading on Sorbent Structure and Adsorption Performance

Silica supported amine materials are promising compositions that can be used to effectively remove CO2 from large stationary sources, such as flue gas generated from coal‐fired power plants (ca. 10 % CO2) and potentially from ambient air (ca. 400 ppm CO2). The CO2 adsorption characteristics of proto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2012-12, Vol.18 (52), p.16649-16664
Hauptverfasser: Kuwahara, Yasutaka, Kang, Dun-Yen, Copeland, John R., Bollini, Praveen, Sievers, Carsten, Kamegawa, Takashi, Yamashita, Hiromi, Jones, Christopher W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16664
container_issue 52
container_start_page 16649
container_title Chemistry : a European journal
container_volume 18
creator Kuwahara, Yasutaka
Kang, Dun-Yen
Copeland, John R.
Bollini, Praveen
Sievers, Carsten
Kamegawa, Takashi
Yamashita, Hiromi
Jones, Christopher W.
description Silica supported amine materials are promising compositions that can be used to effectively remove CO2 from large stationary sources, such as flue gas generated from coal‐fired power plants (ca. 10 % CO2) and potentially from ambient air (ca. 400 ppm CO2). The CO2 adsorption characteristics of prototypical poly(ethyleneimine)–silica composite adsorbents can be significantly enhanced by altering the acid/base properties of the silica support by heteroatom incorporation into the silica matrix. In this study, an array of poly(ethyleneimine)‐impregnated mesoporous silica SBA‐15 materials containing heteroatoms (Al, Ti, Zr, and Ce) in their silica matrices are prepared and examined in adsorption experiments under conditions simulating flue gas (10 % CO2 in Ar) and ambient air (400 ppm CO2 in Ar) to assess the effects of heteroatom incorporation on the CO2 adsorption properties. The structure of the composite adsorbents, including local information concerning the state of the incorporated heteroatoms and the overall surface properties of the silicate supports, are investigated in detail to draw a relationship between the adsorbent structure and CO2 adsorption/desorption performance. The CO2 adsorption/desorption kinetics are assessed by thermogravimetric analysis and in situ FT‐IR measurements. These combined results, coupled with data on adsorbent regenerability, demonstrate a stabilizing effect of the heteroatoms on the poly(ethyleneimine), enhancing adsorbent capacity, adsorption kinetics, regenerability, and stability of the supported aminopolymers over continued cycling. It is suggested that the CO2 adsorption performance of silica–aminopolymer composites may be further enhanced in the future by more precisely tuning the acid/base properties of the support. Soaking it up: An array of poly(ethyleneimine)‐impregnated mesoporous silica materials containing heteroatoms (Me in illustration) in their matrices was prepared and examined in adsorption experiments. Compared to a conventional adsorbent, the composites showed superior CO2 uptakes, CO2 adsorption/desorption kinetics, and regenerabilities that depended on the heteroatom species and its concentration in the supports.
doi_str_mv 10.1002/chem.201203144
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273220105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844487691</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3934-342ca9882e92f149d85b2894a524279aa55395fcb65288d183d8118f793572c63</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqFw5YgsceGyxR_rtc0thLSJFGhRisrNcrxe6rJrL14vkF_G38OrlKjiZI3mecajeQF4idEZRoi8Nbe2OyMIE0RxWT4CM8wILiiv2GMwQ7LkRcWoPAHPhuEOISQrSp-CE0JxxSQWM_Bn6W-1N7aGi0sC5_UQYp9c8DD8tBFehXbf2egMnHfO2wFux74PMWU8IyubbAw6ha5Ye5PFEPXU2r6fF5jBrWud0e_guuu1STA0DwR4ve8t1L6Gm6Br579N87Yh7qxPcJviaNIYD8CDna5sbELspn2fgyeNbgf74v49BV_Ol9eLVbG5vFgv5pvCUUnLgpbEaCkEsZI0uJS1YDsiZKkZKQmXWrN8HdaYXcWIEDUWtBYYi4ZLyjgxFT0Fbw5z-xh-jHZIqnODsW2rvQ3joDDhlOT7I5bR1_-hd2GMPm-XKSo5rTCnmXp1T427ztaqj67Tca_-RZIBeQB-udbuj32M1BS4mgJXx8DVYrX8eKyyWxxcNyT7--jq-F1VnHKmbj5dZPlcfP1w8zl_-Rczpq2-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1239736173</pqid></control><display><type>article</type><title>Enhanced CO2 Adsorption over Polymeric Amines Supported on Heteroatom-Incorporated SBA-15 Silica: Impact of Heteroatom Type and Loading on Sorbent Structure and Adsorption Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kuwahara, Yasutaka ; Kang, Dun-Yen ; Copeland, John R. ; Bollini, Praveen ; Sievers, Carsten ; Kamegawa, Takashi ; Yamashita, Hiromi ; Jones, Christopher W.</creator><creatorcontrib>Kuwahara, Yasutaka ; Kang, Dun-Yen ; Copeland, John R. ; Bollini, Praveen ; Sievers, Carsten ; Kamegawa, Takashi ; Yamashita, Hiromi ; Jones, Christopher W.</creatorcontrib><description>Silica supported amine materials are promising compositions that can be used to effectively remove CO2 from large stationary sources, such as flue gas generated from coal‐fired power plants (ca. 10 % CO2) and potentially from ambient air (ca. 400 ppm CO2). The CO2 adsorption characteristics of prototypical poly(ethyleneimine)–silica composite adsorbents can be significantly enhanced by altering the acid/base properties of the silica support by heteroatom incorporation into the silica matrix. In this study, an array of poly(ethyleneimine)‐impregnated mesoporous silica SBA‐15 materials containing heteroatoms (Al, Ti, Zr, and Ce) in their silica matrices are prepared and examined in adsorption experiments under conditions simulating flue gas (10 % CO2 in Ar) and ambient air (400 ppm CO2 in Ar) to assess the effects of heteroatom incorporation on the CO2 adsorption properties. The structure of the composite adsorbents, including local information concerning the state of the incorporated heteroatoms and the overall surface properties of the silicate supports, are investigated in detail to draw a relationship between the adsorbent structure and CO2 adsorption/desorption performance. The CO2 adsorption/desorption kinetics are assessed by thermogravimetric analysis and in situ FT‐IR measurements. These combined results, coupled with data on adsorbent regenerability, demonstrate a stabilizing effect of the heteroatoms on the poly(ethyleneimine), enhancing adsorbent capacity, adsorption kinetics, regenerability, and stability of the supported aminopolymers over continued cycling. It is suggested that the CO2 adsorption performance of silica–aminopolymer composites may be further enhanced in the future by more precisely tuning the acid/base properties of the support. Soaking it up: An array of poly(ethyleneimine)‐impregnated mesoporous silica materials containing heteroatoms (Me in illustration) in their matrices was prepared and examined in adsorption experiments. Compared to a conventional adsorbent, the composites showed superior CO2 uptakes, CO2 adsorption/desorption kinetics, and regenerabilities that depended on the heteroatom species and its concentration in the supports.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201203144</identifier><identifier>PMID: 23165918</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Adsorbents ; Adsorption ; carbon dioxide fixation ; carbon storage ; Chemistry ; mesoporous materials ; organic-inorganic hybrid composites ; Thermogravimetric analysis</subject><ispartof>Chemistry : a European journal, 2012-12, Vol.18 (52), p.16649-16664</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201203144$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201203144$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23165918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuwahara, Yasutaka</creatorcontrib><creatorcontrib>Kang, Dun-Yen</creatorcontrib><creatorcontrib>Copeland, John R.</creatorcontrib><creatorcontrib>Bollini, Praveen</creatorcontrib><creatorcontrib>Sievers, Carsten</creatorcontrib><creatorcontrib>Kamegawa, Takashi</creatorcontrib><creatorcontrib>Yamashita, Hiromi</creatorcontrib><creatorcontrib>Jones, Christopher W.</creatorcontrib><title>Enhanced CO2 Adsorption over Polymeric Amines Supported on Heteroatom-Incorporated SBA-15 Silica: Impact of Heteroatom Type and Loading on Sorbent Structure and Adsorption Performance</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>Silica supported amine materials are promising compositions that can be used to effectively remove CO2 from large stationary sources, such as flue gas generated from coal‐fired power plants (ca. 10 % CO2) and potentially from ambient air (ca. 400 ppm CO2). The CO2 adsorption characteristics of prototypical poly(ethyleneimine)–silica composite adsorbents can be significantly enhanced by altering the acid/base properties of the silica support by heteroatom incorporation into the silica matrix. In this study, an array of poly(ethyleneimine)‐impregnated mesoporous silica SBA‐15 materials containing heteroatoms (Al, Ti, Zr, and Ce) in their silica matrices are prepared and examined in adsorption experiments under conditions simulating flue gas (10 % CO2 in Ar) and ambient air (400 ppm CO2 in Ar) to assess the effects of heteroatom incorporation on the CO2 adsorption properties. The structure of the composite adsorbents, including local information concerning the state of the incorporated heteroatoms and the overall surface properties of the silicate supports, are investigated in detail to draw a relationship between the adsorbent structure and CO2 adsorption/desorption performance. The CO2 adsorption/desorption kinetics are assessed by thermogravimetric analysis and in situ FT‐IR measurements. These combined results, coupled with data on adsorbent regenerability, demonstrate a stabilizing effect of the heteroatoms on the poly(ethyleneimine), enhancing adsorbent capacity, adsorption kinetics, regenerability, and stability of the supported aminopolymers over continued cycling. It is suggested that the CO2 adsorption performance of silica–aminopolymer composites may be further enhanced in the future by more precisely tuning the acid/base properties of the support. Soaking it up: An array of poly(ethyleneimine)‐impregnated mesoporous silica materials containing heteroatoms (Me in illustration) in their matrices was prepared and examined in adsorption experiments. Compared to a conventional adsorbent, the composites showed superior CO2 uptakes, CO2 adsorption/desorption kinetics, and regenerabilities that depended on the heteroatom species and its concentration in the supports.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>carbon dioxide fixation</subject><subject>carbon storage</subject><subject>Chemistry</subject><subject>mesoporous materials</subject><subject>organic-inorganic hybrid composites</subject><subject>Thermogravimetric analysis</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhi0EoqFw5YgsceGyxR_rtc0thLSJFGhRisrNcrxe6rJrL14vkF_G38OrlKjiZI3mecajeQF4idEZRoi8Nbe2OyMIE0RxWT4CM8wILiiv2GMwQ7LkRcWoPAHPhuEOISQrSp-CE0JxxSQWM_Bn6W-1N7aGi0sC5_UQYp9c8DD8tBFehXbf2egMnHfO2wFux74PMWU8IyubbAw6ha5Ye5PFEPXU2r6fF5jBrWud0e_guuu1STA0DwR4ve8t1L6Gm6Br579N87Yh7qxPcJviaNIYD8CDna5sbELspn2fgyeNbgf74v49BV_Ol9eLVbG5vFgv5pvCUUnLgpbEaCkEsZI0uJS1YDsiZKkZKQmXWrN8HdaYXcWIEDUWtBYYi4ZLyjgxFT0Fbw5z-xh-jHZIqnODsW2rvQ3joDDhlOT7I5bR1_-hd2GMPm-XKSo5rTCnmXp1T427ztaqj67Tca_-RZIBeQB-udbuj32M1BS4mgJXx8DVYrX8eKyyWxxcNyT7--jq-F1VnHKmbj5dZPlcfP1w8zl_-Rczpq2-</recordid><startdate>20121221</startdate><enddate>20121221</enddate><creator>Kuwahara, Yasutaka</creator><creator>Kang, Dun-Yen</creator><creator>Copeland, John R.</creator><creator>Bollini, Praveen</creator><creator>Sievers, Carsten</creator><creator>Kamegawa, Takashi</creator><creator>Yamashita, Hiromi</creator><creator>Jones, Christopher W.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20121221</creationdate><title>Enhanced CO2 Adsorption over Polymeric Amines Supported on Heteroatom-Incorporated SBA-15 Silica: Impact of Heteroatom Type and Loading on Sorbent Structure and Adsorption Performance</title><author>Kuwahara, Yasutaka ; Kang, Dun-Yen ; Copeland, John R. ; Bollini, Praveen ; Sievers, Carsten ; Kamegawa, Takashi ; Yamashita, Hiromi ; Jones, Christopher W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3934-342ca9882e92f149d85b2894a524279aa55395fcb65288d183d8118f793572c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>carbon dioxide fixation</topic><topic>carbon storage</topic><topic>Chemistry</topic><topic>mesoporous materials</topic><topic>organic-inorganic hybrid composites</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuwahara, Yasutaka</creatorcontrib><creatorcontrib>Kang, Dun-Yen</creatorcontrib><creatorcontrib>Copeland, John R.</creatorcontrib><creatorcontrib>Bollini, Praveen</creatorcontrib><creatorcontrib>Sievers, Carsten</creatorcontrib><creatorcontrib>Kamegawa, Takashi</creatorcontrib><creatorcontrib>Yamashita, Hiromi</creatorcontrib><creatorcontrib>Jones, Christopher W.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuwahara, Yasutaka</au><au>Kang, Dun-Yen</au><au>Copeland, John R.</au><au>Bollini, Praveen</au><au>Sievers, Carsten</au><au>Kamegawa, Takashi</au><au>Yamashita, Hiromi</au><au>Jones, Christopher W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced CO2 Adsorption over Polymeric Amines Supported on Heteroatom-Incorporated SBA-15 Silica: Impact of Heteroatom Type and Loading on Sorbent Structure and Adsorption Performance</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2012-12-21</date><risdate>2012</risdate><volume>18</volume><issue>52</issue><spage>16649</spage><epage>16664</epage><pages>16649-16664</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>Silica supported amine materials are promising compositions that can be used to effectively remove CO2 from large stationary sources, such as flue gas generated from coal‐fired power plants (ca. 10 % CO2) and potentially from ambient air (ca. 400 ppm CO2). The CO2 adsorption characteristics of prototypical poly(ethyleneimine)–silica composite adsorbents can be significantly enhanced by altering the acid/base properties of the silica support by heteroatom incorporation into the silica matrix. In this study, an array of poly(ethyleneimine)‐impregnated mesoporous silica SBA‐15 materials containing heteroatoms (Al, Ti, Zr, and Ce) in their silica matrices are prepared and examined in adsorption experiments under conditions simulating flue gas (10 % CO2 in Ar) and ambient air (400 ppm CO2 in Ar) to assess the effects of heteroatom incorporation on the CO2 adsorption properties. The structure of the composite adsorbents, including local information concerning the state of the incorporated heteroatoms and the overall surface properties of the silicate supports, are investigated in detail to draw a relationship between the adsorbent structure and CO2 adsorption/desorption performance. The CO2 adsorption/desorption kinetics are assessed by thermogravimetric analysis and in situ FT‐IR measurements. These combined results, coupled with data on adsorbent regenerability, demonstrate a stabilizing effect of the heteroatoms on the poly(ethyleneimine), enhancing adsorbent capacity, adsorption kinetics, regenerability, and stability of the supported aminopolymers over continued cycling. It is suggested that the CO2 adsorption performance of silica–aminopolymer composites may be further enhanced in the future by more precisely tuning the acid/base properties of the support. Soaking it up: An array of poly(ethyleneimine)‐impregnated mesoporous silica materials containing heteroatoms (Me in illustration) in their matrices was prepared and examined in adsorption experiments. Compared to a conventional adsorbent, the composites showed superior CO2 uptakes, CO2 adsorption/desorption kinetics, and regenerabilities that depended on the heteroatom species and its concentration in the supports.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23165918</pmid><doi>10.1002/chem.201203144</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2012-12, Vol.18 (52), p.16649-16664
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1273220105
source Wiley Online Library Journals Frontfile Complete
subjects Adsorbents
Adsorption
carbon dioxide fixation
carbon storage
Chemistry
mesoporous materials
organic-inorganic hybrid composites
Thermogravimetric analysis
title Enhanced CO2 Adsorption over Polymeric Amines Supported on Heteroatom-Incorporated SBA-15 Silica: Impact of Heteroatom Type and Loading on Sorbent Structure and Adsorption Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20CO2%20Adsorption%20over%20Polymeric%20Amines%20Supported%20on%20Heteroatom-Incorporated%20SBA-15%20Silica:%20Impact%20of%20Heteroatom%20Type%20and%20Loading%20on%20Sorbent%20Structure%20and%20Adsorption%20Performance&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Kuwahara,%20Yasutaka&rft.date=2012-12-21&rft.volume=18&rft.issue=52&rft.spage=16649&rft.epage=16664&rft.pages=16649-16664&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201203144&rft_dat=%3Cproquest_pubme%3E2844487691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1239736173&rft_id=info:pmid/23165918&rfr_iscdi=true