Active Learning for Convenient Annotation and Classification of Secondary Ion Mass Spectrometry Images
Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in adva...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2013-01, Vol.85 (1), p.147-155 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | Analytical chemistry (Washington) |
container_volume | 85 |
creator | Hanselmann, Michael Röder, Jens Köthe, Ullrich Renard, Bernhard Y Heeren, Ron M. A Hamprecht, Fred A |
description | Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in advance. This process is time-consuming and hence costly, especially if the tissue is heterogeneous. In theory, it may be sufficient to only label a few highly representative pixels of an MS image, but it is not known a priori which pixels to select. This motivates active learning strategies in which the algorithm itself queries the expert by automatically suggesting promising candidate pixels of an MS image for labeling. Given a suitable querying strategy, the number of required training labels can be significantly reduced while maintaining classification accuracy. In this work, we propose active learning for convenient annotation of MSI data. We generalize a recently proposed active learning method to the multiclass case and combine it with the random forest classifier. Its superior performance over random sampling is demonstrated on secondary ion mass spectrometry data, making it an interesting approach for the classification of MS images. |
doi_str_mv | 10.1021/ac3023313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273124221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273124221</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-887847cd4f6e8cfca6e879ee6efb8b8dc85d205ee4b60e64932866079607845a3</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMotlYP_gEJiKCH1XxtNj2W4keh4qF6XtLspGzpJjXZLfjvTWktoodh4J2Hd2ZehC4puaeE0QdtOGGcU36E-jRnJJNKsWPUJ4TwjBWE9NBZjEtCKCVUnqIe4zQvBFd9ZEemrTeAp6CDq90CWx_w2LsNuBpci0fO-Va3tXdYuwqPVzrG2tZmJ3mLZ2C8q3T4wpMkvKYxnq3BtME30G7VRi8gnqMTq1cRLvZ9gD6eHt_HL9n07XkyHk0zzQVvM6UKJQpTCStBGWt0asUQQIKdq7mqjMorRnIAMZcEpBhypqQkxTCVErnmA3S7810H_9lBbMumjgZWK-3Ad7GkrOCUCcZoQq__oEvfBZeuS5SUgtOCDRN1t6NM8DEGsOU61E16t6Sk3IZfHsJP7NXesZs3UB3In7QTcLMDtIm_tv0z-gZK8Imq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266431729</pqid></control><display><type>article</type><title>Active Learning for Convenient Annotation and Classification of Secondary Ion Mass Spectrometry Images</title><source>MEDLINE</source><source>ACS Publications</source><creator>Hanselmann, Michael ; Röder, Jens ; Köthe, Ullrich ; Renard, Bernhard Y ; Heeren, Ron M. A ; Hamprecht, Fred A</creator><creatorcontrib>Hanselmann, Michael ; Röder, Jens ; Köthe, Ullrich ; Renard, Bernhard Y ; Heeren, Ron M. A ; Hamprecht, Fred A</creatorcontrib><description>Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in advance. This process is time-consuming and hence costly, especially if the tissue is heterogeneous. In theory, it may be sufficient to only label a few highly representative pixels of an MS image, but it is not known a priori which pixels to select. This motivates active learning strategies in which the algorithm itself queries the expert by automatically suggesting promising candidate pixels of an MS image for labeling. Given a suitable querying strategy, the number of required training labels can be significantly reduced while maintaining classification accuracy. In this work, we propose active learning for convenient annotation of MSI data. We generalize a recently proposed active learning method to the multiclass case and combine it with the random forest classifier. Its superior performance over random sampling is demonstrated on secondary ion mass spectrometry data, making it an interesting approach for the classification of MS images.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac3023313</identifier><identifier>PMID: 23157438</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Animals ; Classification ; Humans ; Ions ; Learning ; Mass spectrometry ; MCF-7 Cells ; Mice ; Pattern Recognition, Automated ; Spectrometry, Mass, Secondary Ion ; Support Vector Machine ; Transplantation, Heterologous</subject><ispartof>Analytical chemistry (Washington), 2013-01, Vol.85 (1), p.147-155</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 2, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-887847cd4f6e8cfca6e879ee6efb8b8dc85d205ee4b60e64932866079607845a3</citedby><cites>FETCH-LOGICAL-a343t-887847cd4f6e8cfca6e879ee6efb8b8dc85d205ee4b60e64932866079607845a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac3023313$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac3023313$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23157438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanselmann, Michael</creatorcontrib><creatorcontrib>Röder, Jens</creatorcontrib><creatorcontrib>Köthe, Ullrich</creatorcontrib><creatorcontrib>Renard, Bernhard Y</creatorcontrib><creatorcontrib>Heeren, Ron M. A</creatorcontrib><creatorcontrib>Hamprecht, Fred A</creatorcontrib><title>Active Learning for Convenient Annotation and Classification of Secondary Ion Mass Spectrometry Images</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in advance. This process is time-consuming and hence costly, especially if the tissue is heterogeneous. In theory, it may be sufficient to only label a few highly representative pixels of an MS image, but it is not known a priori which pixels to select. This motivates active learning strategies in which the algorithm itself queries the expert by automatically suggesting promising candidate pixels of an MS image for labeling. Given a suitable querying strategy, the number of required training labels can be significantly reduced while maintaining classification accuracy. In this work, we propose active learning for convenient annotation of MSI data. We generalize a recently proposed active learning method to the multiclass case and combine it with the random forest classifier. Its superior performance over random sampling is demonstrated on secondary ion mass spectrometry data, making it an interesting approach for the classification of MS images.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Classification</subject><subject>Humans</subject><subject>Ions</subject><subject>Learning</subject><subject>Mass spectrometry</subject><subject>MCF-7 Cells</subject><subject>Mice</subject><subject>Pattern Recognition, Automated</subject><subject>Spectrometry, Mass, Secondary Ion</subject><subject>Support Vector Machine</subject><subject>Transplantation, Heterologous</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE1LAzEQhoMotlYP_gEJiKCH1XxtNj2W4keh4qF6XtLspGzpJjXZLfjvTWktoodh4J2Hd2ZehC4puaeE0QdtOGGcU36E-jRnJJNKsWPUJ4TwjBWE9NBZjEtCKCVUnqIe4zQvBFd9ZEemrTeAp6CDq90CWx_w2LsNuBpci0fO-Va3tXdYuwqPVzrG2tZmJ3mLZ2C8q3T4wpMkvKYxnq3BtME30G7VRi8gnqMTq1cRLvZ9gD6eHt_HL9n07XkyHk0zzQVvM6UKJQpTCStBGWt0asUQQIKdq7mqjMorRnIAMZcEpBhypqQkxTCVErnmA3S7810H_9lBbMumjgZWK-3Ad7GkrOCUCcZoQq__oEvfBZeuS5SUgtOCDRN1t6NM8DEGsOU61E16t6Sk3IZfHsJP7NXesZs3UB3In7QTcLMDtIm_tv0z-gZK8Imq</recordid><startdate>20130102</startdate><enddate>20130102</enddate><creator>Hanselmann, Michael</creator><creator>Röder, Jens</creator><creator>Köthe, Ullrich</creator><creator>Renard, Bernhard Y</creator><creator>Heeren, Ron M. A</creator><creator>Hamprecht, Fred A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130102</creationdate><title>Active Learning for Convenient Annotation and Classification of Secondary Ion Mass Spectrometry Images</title><author>Hanselmann, Michael ; Röder, Jens ; Köthe, Ullrich ; Renard, Bernhard Y ; Heeren, Ron M. A ; Hamprecht, Fred A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-887847cd4f6e8cfca6e879ee6efb8b8dc85d205ee4b60e64932866079607845a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Classification</topic><topic>Humans</topic><topic>Ions</topic><topic>Learning</topic><topic>Mass spectrometry</topic><topic>MCF-7 Cells</topic><topic>Mice</topic><topic>Pattern Recognition, Automated</topic><topic>Spectrometry, Mass, Secondary Ion</topic><topic>Support Vector Machine</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanselmann, Michael</creatorcontrib><creatorcontrib>Röder, Jens</creatorcontrib><creatorcontrib>Köthe, Ullrich</creatorcontrib><creatorcontrib>Renard, Bernhard Y</creatorcontrib><creatorcontrib>Heeren, Ron M. A</creatorcontrib><creatorcontrib>Hamprecht, Fred A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanselmann, Michael</au><au>Röder, Jens</au><au>Köthe, Ullrich</au><au>Renard, Bernhard Y</au><au>Heeren, Ron M. A</au><au>Hamprecht, Fred A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Learning for Convenient Annotation and Classification of Secondary Ion Mass Spectrometry Images</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2013-01-02</date><risdate>2013</risdate><volume>85</volume><issue>1</issue><spage>147</spage><epage>155</epage><pages>147-155</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in advance. This process is time-consuming and hence costly, especially if the tissue is heterogeneous. In theory, it may be sufficient to only label a few highly representative pixels of an MS image, but it is not known a priori which pixels to select. This motivates active learning strategies in which the algorithm itself queries the expert by automatically suggesting promising candidate pixels of an MS image for labeling. Given a suitable querying strategy, the number of required training labels can be significantly reduced while maintaining classification accuracy. In this work, we propose active learning for convenient annotation of MSI data. We generalize a recently proposed active learning method to the multiclass case and combine it with the random forest classifier. Its superior performance over random sampling is demonstrated on secondary ion mass spectrometry data, making it an interesting approach for the classification of MS images.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23157438</pmid><doi>10.1021/ac3023313</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2013-01, Vol.85 (1), p.147-155 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1273124221 |
source | MEDLINE; ACS Publications |
subjects | Algorithms Animals Classification Humans Ions Learning Mass spectrometry MCF-7 Cells Mice Pattern Recognition, Automated Spectrometry, Mass, Secondary Ion Support Vector Machine Transplantation, Heterologous |
title | Active Learning for Convenient Annotation and Classification of Secondary Ion Mass Spectrometry Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Learning%20for%20Convenient%20Annotation%20and%20Classification%20of%20Secondary%20Ion%20Mass%20Spectrometry%20Images&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Hanselmann,%20Michael&rft.date=2013-01-02&rft.volume=85&rft.issue=1&rft.spage=147&rft.epage=155&rft.pages=147-155&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac3023313&rft_dat=%3Cproquest_cross%3E1273124221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266431729&rft_id=info:pmid/23157438&rfr_iscdi=true |