Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness

The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2012-12, Vol.68 (4), p.1046-1054
Hauptverfasser: Shen, Chung‐Wei, Chen, Yi‐Hau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1054
container_issue 4
container_start_page 1046
container_title Biometrics
container_volume 68
creator Shen, Chung‐Wei
Chen, Yi‐Hau
description The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.
doi_str_mv 10.1111/j.1541-0420.2012.01758.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273115415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41806023</jstor_id><sourcerecordid>41806023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4828-2c8bb540f0ca5044ceae3cf4663b0ce06fbc873240cbae72d4de19aac1fb31643</originalsourceid><addsrcrecordid>eNqNkEtv1DAUhS0EokPhJwCR2LBJuH7EyWyQ2jIdKnWmiz5gZznOTZWQxFM7EVN-PQ4ps2CFN_b1-e659iEkopDQsD41CU0FjUEwSBhQlgDN0jzZPyOLg_CcLABAxlzQ70fklfdNKJcpsJfkiDEhOSyXC3K3sSW20TW2aIba9lFlXbTGHp1u619YRis_1J0e6v4-Wj2MemJ8dGKM7TpbzvdfnN3ZcYg2tfeh7tH71-RFpVuPb572Y3J7vro5-xpfXq0vzk4uYyNylsfM5EWRCqjA6BSEMKiRm0pIyQswCLIqTJ5xJsAUGjNWihLpUmtDq4JTKfgx-Tj77px9GNEPqqu9wbbVPdrRK8oyTqdI0oB--Adt7Oj68LpACcYklWwyzGfKOOu9w0rtXPi_e1QU1JS9atTkp6aI1ZS9-pO92ofWd08DxqLD8tD4N-wAfJ6Bn3WLj_9trE4vrjbTMRi8nQ0aP1h3MBA0BwmMBz2e9doPuD_o2v1QMuNZqr5t12p7t75JM9iq88C_n_lKW6XvXe3V7XUYnQJQkQMI_hvaWLTJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1242261624</pqid></control><display><type>article</type><title>Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Shen, Chung‐Wei ; Chen, Yi‐Hau</creator><creatorcontrib>Shen, Chung‐Wei ; Chen, Yi‐Hau</creatorcontrib><description>The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2012.01758.x</identifier><identifier>PMID: 22463099</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Algorithms ; Analytical estimating ; BIOMETRIC METHODOLOGY ; Biometrics ; biometry ; Biometry - methods ; Clinical outcomes ; Correlations ; Data Interpretation, Statistical ; Drug design ; Epidemiologic Methods ; equations ; Estimating techniques ; Longitudinal data ; Longitudinal Studies ; Missing data ; Modeling ; Models, Statistical ; Parametric models ; Regression Analysis ; Repeated measures ; Sample Size ; School dropouts</subject><ispartof>Biometrics, 2012-12, Vol.68 (4), p.1046-1054</ispartof><rights>2012 The International Biometric Society</rights><rights>2012, The International Biometric Society</rights><rights>2012, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4828-2c8bb540f0ca5044ceae3cf4663b0ce06fbc873240cbae72d4de19aac1fb31643</citedby><cites>FETCH-LOGICAL-c4828-2c8bb540f0ca5044ceae3cf4663b0ce06fbc873240cbae72d4de19aac1fb31643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41806023$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41806023$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27903,27904,45553,45554,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22463099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Chung‐Wei</creatorcontrib><creatorcontrib>Chen, Yi‐Hau</creatorcontrib><title>Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.</description><subject>Algorithms</subject><subject>Analytical estimating</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>biometry</subject><subject>Biometry - methods</subject><subject>Clinical outcomes</subject><subject>Correlations</subject><subject>Data Interpretation, Statistical</subject><subject>Drug design</subject><subject>Epidemiologic Methods</subject><subject>equations</subject><subject>Estimating techniques</subject><subject>Longitudinal data</subject><subject>Longitudinal Studies</subject><subject>Missing data</subject><subject>Modeling</subject><subject>Models, Statistical</subject><subject>Parametric models</subject><subject>Regression Analysis</subject><subject>Repeated measures</subject><subject>Sample Size</subject><subject>School dropouts</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtv1DAUhS0EokPhJwCR2LBJuH7EyWyQ2jIdKnWmiz5gZznOTZWQxFM7EVN-PQ4ps2CFN_b1-e659iEkopDQsD41CU0FjUEwSBhQlgDN0jzZPyOLg_CcLABAxlzQ70fklfdNKJcpsJfkiDEhOSyXC3K3sSW20TW2aIba9lFlXbTGHp1u619YRis_1J0e6v4-Wj2MemJ8dGKM7TpbzvdfnN3ZcYg2tfeh7tH71-RFpVuPb572Y3J7vro5-xpfXq0vzk4uYyNylsfM5EWRCqjA6BSEMKiRm0pIyQswCLIqTJ5xJsAUGjNWihLpUmtDq4JTKfgx-Tj77px9GNEPqqu9wbbVPdrRK8oyTqdI0oB--Adt7Oj68LpACcYklWwyzGfKOOu9w0rtXPi_e1QU1JS9atTkp6aI1ZS9-pO92ofWd08DxqLD8tD4N-wAfJ6Bn3WLj_9trE4vrjbTMRi8nQ0aP1h3MBA0BwmMBz2e9doPuD_o2v1QMuNZqr5t12p7t75JM9iq88C_n_lKW6XvXe3V7XUYnQJQkQMI_hvaWLTJ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Shen, Chung‐Wei</creator><creator>Chen, Yi‐Hau</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>201212</creationdate><title>Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness</title><author>Shen, Chung‐Wei ; Chen, Yi‐Hau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4828-2c8bb540f0ca5044ceae3cf4663b0ce06fbc873240cbae72d4de19aac1fb31643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Analytical estimating</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>biometry</topic><topic>Biometry - methods</topic><topic>Clinical outcomes</topic><topic>Correlations</topic><topic>Data Interpretation, Statistical</topic><topic>Drug design</topic><topic>Epidemiologic Methods</topic><topic>equations</topic><topic>Estimating techniques</topic><topic>Longitudinal data</topic><topic>Longitudinal Studies</topic><topic>Missing data</topic><topic>Modeling</topic><topic>Models, Statistical</topic><topic>Parametric models</topic><topic>Regression Analysis</topic><topic>Repeated measures</topic><topic>Sample Size</topic><topic>School dropouts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Chung‐Wei</creatorcontrib><creatorcontrib>Chen, Yi‐Hau</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Chung‐Wei</au><au>Chen, Yi‐Hau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2012-12</date><risdate>2012</risdate><volume>68</volume><issue>4</issue><spage>1046</spage><epage>1054</epage><pages>1046-1054</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>22463099</pmid><doi>10.1111/j.1541-0420.2012.01758.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2012-12, Vol.68 (4), p.1046-1054
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_1273115415
source MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Algorithms
Analytical estimating
BIOMETRIC METHODOLOGY
Biometrics
biometry
Biometry - methods
Clinical outcomes
Correlations
Data Interpretation, Statistical
Drug design
Epidemiologic Methods
equations
Estimating techniques
Longitudinal data
Longitudinal Studies
Missing data
Modeling
Models, Statistical
Parametric models
Regression Analysis
Repeated measures
Sample Size
School dropouts
title Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Selection%20for%20Generalized%20Estimating%20Equations%20Accommodating%20Dropout%20Missingness&rft.jtitle=Biometrics&rft.au=Shen,%20Chung%E2%80%90Wei&rft.date=2012-12&rft.volume=68&rft.issue=4&rft.spage=1046&rft.epage=1054&rft.pages=1046-1054&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2012.01758.x&rft_dat=%3Cjstor_proqu%3E41806023%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1242261624&rft_id=info:pmid/22463099&rft_jstor_id=41806023&rfr_iscdi=true