Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex
Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2012-12, Vol.76 (5), p.1030-1041 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1041 |
---|---|
container_issue | 5 |
container_start_page | 1030 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 76 |
creator | Li, Qian Ke, Ya Chan, Danny C.W. Qian, Zhong-Ming Yung, Ken K.L. Ko, Ho Arbuthnott, Gordon W. Yung, Wing-Ho |
description | Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents.
► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation
Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease. |
doi_str_mv | 10.1016/j.neuron.2012.09.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1272739908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312008860</els_id><sourcerecordid>1237509730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-9297df04ada742e9f8c923524df68529a78b4c43edb0ed6e975fa300e9a1e22d3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQQIMo7rj6D0QavHjptvLRnc5F0Fl3XVhRdAVvIZNUY8aeZEzS4v57M87qwYN4CoFXFfIeIY8pdBTo8HzbBVxSDB0DyjpQHXB2h6woKNkKqtRdsoJRDe3AJD8hD3LeAlDRK3qfnDDOqJQ9rMjn6y-YzB6X4m1zhrhvXiXjQ_Ox-N0ym-JjaOr1vUlffcgxeBOaD6bk5swntGW-aS7DNC8YLObmbSwxNeuYCv54SO5NZs746PY8JZ_OX1-v37RX7y4u1y-vWtuPQ2kVU9JNIIwzUjBU02gV4z0TbhrGnikjx42wgqPbALoBlewnwwFQGYqMOX5Knh337lP8tmAueuezxXk2AeOSNWWyClAKxv9AeXWiJIeKPv0L3cYlhfoRTXvgoxjZwCsljpRNMeeEk94nvzPpRlPQh0h6q4-R9CGSBqVrpDr25Hb5stmh-zP0u0oFXhwBrOK-e0w6W39Q7H5J1y76f7_wE6PSpDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503848263</pqid></control><display><type>article</type><title>Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Qian ; Ke, Ya ; Chan, Danny C.W. ; Qian, Zhong-Ming ; Yung, Ken K.L. ; Ko, Ho ; Arbuthnott, Gordon W. ; Yung, Wing-Ho</creator><creatorcontrib>Li, Qian ; Ke, Ya ; Chan, Danny C.W. ; Qian, Zhong-Ming ; Yung, Ken K.L. ; Ko, Ho ; Arbuthnott, Gordon W. ; Yung, Wing-Ho</creatorcontrib><description>Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents.
► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation
Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.09.032</identifier><identifier>PMID: 23217750</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Adrenergic Agents - toxicity ; Afferent Pathways - physiology ; Animals ; Antiparkinson Agents - therapeutic use ; Apomorphine - therapeutic use ; Basal ganglia ; Biophysics ; Brain Mapping ; Brain research ; Central nervous system diseases ; Cortex (motor) ; Deep brain stimulation ; Deep Brain Stimulation - methods ; Disease Models, Animal ; Dominance ; Dopamine ; EEG ; Electrical stimuli ; Electrodes ; Electrodes, Implanted ; Electroencephalography ; Electrophysiological recording ; Eusebio ; Evoked Potentials, Motor - physiology ; Experiments ; Firing pattern ; Fourier transforms ; Functional Laterality ; Globus pallidus ; Locomotion - physiology ; Male ; Medial Forebrain Bundle - drug effects ; Medial Forebrain Bundle - physiopathology ; Motor Cortex - pathology ; Motor Cortex - physiopathology ; Motor task performance ; Movement disorders ; Neurons ; Neurons - drug effects ; Neurons - physiology ; Oscillations ; Oxidopamine - toxicity ; Parkinson's disease ; Parkinsonian Disorders - chemically induced ; Parkinsonian Disorders - physiopathology ; Parkinsonian Disorders - therapy ; Rats ; Rats, Sprague-Dawley ; Rhythms ; Rodents ; Solitary tract nucleus ; Statistics as Topic ; Stochasticity ; Studies ; subthalamic nucleus ; Subthalamic Nucleus - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2012-12, Vol.76 (5), p.1030-1041</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 6, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-9297df04ada742e9f8c923524df68529a78b4c43edb0ed6e975fa300e9a1e22d3</citedby><cites>FETCH-LOGICAL-c586t-9297df04ada742e9f8c923524df68529a78b4c43edb0ed6e975fa300e9a1e22d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627312008860$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23217750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Ke, Ya</creatorcontrib><creatorcontrib>Chan, Danny C.W.</creatorcontrib><creatorcontrib>Qian, Zhong-Ming</creatorcontrib><creatorcontrib>Yung, Ken K.L.</creatorcontrib><creatorcontrib>Ko, Ho</creatorcontrib><creatorcontrib>Arbuthnott, Gordon W.</creatorcontrib><creatorcontrib>Yung, Wing-Ho</creatorcontrib><title>Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents.
► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation
Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease.</description><subject>Action Potentials - physiology</subject><subject>Adrenergic Agents - toxicity</subject><subject>Afferent Pathways - physiology</subject><subject>Animals</subject><subject>Antiparkinson Agents - therapeutic use</subject><subject>Apomorphine - therapeutic use</subject><subject>Basal ganglia</subject><subject>Biophysics</subject><subject>Brain Mapping</subject><subject>Brain research</subject><subject>Central nervous system diseases</subject><subject>Cortex (motor)</subject><subject>Deep brain stimulation</subject><subject>Deep Brain Stimulation - methods</subject><subject>Disease Models, Animal</subject><subject>Dominance</subject><subject>Dopamine</subject><subject>EEG</subject><subject>Electrical stimuli</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>Electroencephalography</subject><subject>Electrophysiological recording</subject><subject>Eusebio</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Experiments</subject><subject>Firing pattern</subject><subject>Fourier transforms</subject><subject>Functional Laterality</subject><subject>Globus pallidus</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Medial Forebrain Bundle - drug effects</subject><subject>Medial Forebrain Bundle - physiopathology</subject><subject>Motor Cortex - pathology</subject><subject>Motor Cortex - physiopathology</subject><subject>Motor task performance</subject><subject>Movement disorders</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Oscillations</subject><subject>Oxidopamine - toxicity</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - chemically induced</subject><subject>Parkinsonian Disorders - physiopathology</subject><subject>Parkinsonian Disorders - therapy</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rhythms</subject><subject>Rodents</subject><subject>Solitary tract nucleus</subject><subject>Statistics as Topic</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>subthalamic nucleus</subject><subject>Subthalamic Nucleus - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQQIMo7rj6D0QavHjptvLRnc5F0Fl3XVhRdAVvIZNUY8aeZEzS4v57M87qwYN4CoFXFfIeIY8pdBTo8HzbBVxSDB0DyjpQHXB2h6woKNkKqtRdsoJRDe3AJD8hD3LeAlDRK3qfnDDOqJQ9rMjn6y-YzB6X4m1zhrhvXiXjQ_Ox-N0ym-JjaOr1vUlffcgxeBOaD6bk5swntGW-aS7DNC8YLObmbSwxNeuYCv54SO5NZs746PY8JZ_OX1-v37RX7y4u1y-vWtuPQ2kVU9JNIIwzUjBU02gV4z0TbhrGnikjx42wgqPbALoBlewnwwFQGYqMOX5Knh337lP8tmAueuezxXk2AeOSNWWyClAKxv9AeXWiJIeKPv0L3cYlhfoRTXvgoxjZwCsljpRNMeeEk94nvzPpRlPQh0h6q4-R9CGSBqVrpDr25Hb5stmh-zP0u0oFXhwBrOK-e0w6W39Q7H5J1y76f7_wE6PSpDI</recordid><startdate>20121206</startdate><enddate>20121206</enddate><creator>Li, Qian</creator><creator>Ke, Ya</creator><creator>Chan, Danny C.W.</creator><creator>Qian, Zhong-Ming</creator><creator>Yung, Ken K.L.</creator><creator>Ko, Ho</creator><creator>Arbuthnott, Gordon W.</creator><creator>Yung, Wing-Ho</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20121206</creationdate><title>Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex</title><author>Li, Qian ; Ke, Ya ; Chan, Danny C.W. ; Qian, Zhong-Ming ; Yung, Ken K.L. ; Ko, Ho ; Arbuthnott, Gordon W. ; Yung, Wing-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-9297df04ada742e9f8c923524df68529a78b4c43edb0ed6e975fa300e9a1e22d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - physiology</topic><topic>Adrenergic Agents - toxicity</topic><topic>Afferent Pathways - physiology</topic><topic>Animals</topic><topic>Antiparkinson Agents - therapeutic use</topic><topic>Apomorphine - therapeutic use</topic><topic>Basal ganglia</topic><topic>Biophysics</topic><topic>Brain Mapping</topic><topic>Brain research</topic><topic>Central nervous system diseases</topic><topic>Cortex (motor)</topic><topic>Deep brain stimulation</topic><topic>Deep Brain Stimulation - methods</topic><topic>Disease Models, Animal</topic><topic>Dominance</topic><topic>Dopamine</topic><topic>EEG</topic><topic>Electrical stimuli</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>Electroencephalography</topic><topic>Electrophysiological recording</topic><topic>Eusebio</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Experiments</topic><topic>Firing pattern</topic><topic>Fourier transforms</topic><topic>Functional Laterality</topic><topic>Globus pallidus</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Medial Forebrain Bundle - drug effects</topic><topic>Medial Forebrain Bundle - physiopathology</topic><topic>Motor Cortex - pathology</topic><topic>Motor Cortex - physiopathology</topic><topic>Motor task performance</topic><topic>Movement disorders</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Oscillations</topic><topic>Oxidopamine - toxicity</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - chemically induced</topic><topic>Parkinsonian Disorders - physiopathology</topic><topic>Parkinsonian Disorders - therapy</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rhythms</topic><topic>Rodents</topic><topic>Solitary tract nucleus</topic><topic>Statistics as Topic</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>subthalamic nucleus</topic><topic>Subthalamic Nucleus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Ke, Ya</creatorcontrib><creatorcontrib>Chan, Danny C.W.</creatorcontrib><creatorcontrib>Qian, Zhong-Ming</creatorcontrib><creatorcontrib>Yung, Ken K.L.</creatorcontrib><creatorcontrib>Ko, Ho</creatorcontrib><creatorcontrib>Arbuthnott, Gordon W.</creatorcontrib><creatorcontrib>Yung, Wing-Ho</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qian</au><au>Ke, Ya</au><au>Chan, Danny C.W.</au><au>Qian, Zhong-Ming</au><au>Yung, Ken K.L.</au><au>Ko, Ho</au><au>Arbuthnott, Gordon W.</au><au>Yung, Wing-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2012-12-06</date><risdate>2012</risdate><volume>76</volume><issue>5</issue><spage>1030</spage><epage>1041</epage><pages>1030-1041</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents.
► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation
Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23217750</pmid><doi>10.1016/j.neuron.2012.09.032</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2012-12, Vol.76 (5), p.1030-1041 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1272739908 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Action Potentials - physiology Adrenergic Agents - toxicity Afferent Pathways - physiology Animals Antiparkinson Agents - therapeutic use Apomorphine - therapeutic use Basal ganglia Biophysics Brain Mapping Brain research Central nervous system diseases Cortex (motor) Deep brain stimulation Deep Brain Stimulation - methods Disease Models, Animal Dominance Dopamine EEG Electrical stimuli Electrodes Electrodes, Implanted Electroencephalography Electrophysiological recording Eusebio Evoked Potentials, Motor - physiology Experiments Firing pattern Fourier transforms Functional Laterality Globus pallidus Locomotion - physiology Male Medial Forebrain Bundle - drug effects Medial Forebrain Bundle - physiopathology Motor Cortex - pathology Motor Cortex - physiopathology Motor task performance Movement disorders Neurons Neurons - drug effects Neurons - physiology Oscillations Oxidopamine - toxicity Parkinson's disease Parkinsonian Disorders - chemically induced Parkinsonian Disorders - physiopathology Parkinsonian Disorders - therapy Rats Rats, Sprague-Dawley Rhythms Rodents Solitary tract nucleus Statistics as Topic Stochasticity Studies subthalamic nucleus Subthalamic Nucleus - physiology |
title | Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20Deep%20Brain%20Stimulation%20in%20Parkinsonian%20Rats%20Directly%20Influences%20Motor%20Cortex&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Li,%20Qian&rft.date=2012-12-06&rft.volume=76&rft.issue=5&rft.spage=1030&rft.epage=1041&rft.pages=1030-1041&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.09.032&rft_dat=%3Cproquest_cross%3E1237509730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503848263&rft_id=info:pmid/23217750&rft_els_id=S0896627312008860&rfr_iscdi=true |