Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex

Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2012-12, Vol.76 (5), p.1030-1041
Hauptverfasser: Li, Qian, Ke, Ya, Chan, Danny C.W., Qian, Zhong-Ming, Yung, Ken K.L., Ko, Ho, Arbuthnott, Gordon W., Yung, Wing-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1041
container_issue 5
container_start_page 1030
container_title Neuron (Cambridge, Mass.)
container_volume 76
creator Li, Qian
Ke, Ya
Chan, Danny C.W.
Qian, Zhong-Ming
Yung, Ken K.L.
Ko, Ho
Arbuthnott, Gordon W.
Yung, Wing-Ho
description Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. ► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease.
doi_str_mv 10.1016/j.neuron.2012.09.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1272739908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312008860</els_id><sourcerecordid>1237509730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-9297df04ada742e9f8c923524df68529a78b4c43edb0ed6e975fa300e9a1e22d3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQQIMo7rj6D0QavHjptvLRnc5F0Fl3XVhRdAVvIZNUY8aeZEzS4v57M87qwYN4CoFXFfIeIY8pdBTo8HzbBVxSDB0DyjpQHXB2h6woKNkKqtRdsoJRDe3AJD8hD3LeAlDRK3qfnDDOqJQ9rMjn6y-YzB6X4m1zhrhvXiXjQ_Ox-N0ym-JjaOr1vUlffcgxeBOaD6bk5swntGW-aS7DNC8YLObmbSwxNeuYCv54SO5NZs746PY8JZ_OX1-v37RX7y4u1y-vWtuPQ2kVU9JNIIwzUjBU02gV4z0TbhrGnikjx42wgqPbALoBlewnwwFQGYqMOX5Knh337lP8tmAueuezxXk2AeOSNWWyClAKxv9AeXWiJIeKPv0L3cYlhfoRTXvgoxjZwCsljpRNMeeEk94nvzPpRlPQh0h6q4-R9CGSBqVrpDr25Hb5stmh-zP0u0oFXhwBrOK-e0w6W39Q7H5J1y76f7_wE6PSpDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503848263</pqid></control><display><type>article</type><title>Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Qian ; Ke, Ya ; Chan, Danny C.W. ; Qian, Zhong-Ming ; Yung, Ken K.L. ; Ko, Ho ; Arbuthnott, Gordon W. ; Yung, Wing-Ho</creator><creatorcontrib>Li, Qian ; Ke, Ya ; Chan, Danny C.W. ; Qian, Zhong-Ming ; Yung, Ken K.L. ; Ko, Ho ; Arbuthnott, Gordon W. ; Yung, Wing-Ho</creatorcontrib><description>Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. ► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.09.032</identifier><identifier>PMID: 23217750</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Adrenergic Agents - toxicity ; Afferent Pathways - physiology ; Animals ; Antiparkinson Agents - therapeutic use ; Apomorphine - therapeutic use ; Basal ganglia ; Biophysics ; Brain Mapping ; Brain research ; Central nervous system diseases ; Cortex (motor) ; Deep brain stimulation ; Deep Brain Stimulation - methods ; Disease Models, Animal ; Dominance ; Dopamine ; EEG ; Electrical stimuli ; Electrodes ; Electrodes, Implanted ; Electroencephalography ; Electrophysiological recording ; Eusebio ; Evoked Potentials, Motor - physiology ; Experiments ; Firing pattern ; Fourier transforms ; Functional Laterality ; Globus pallidus ; Locomotion - physiology ; Male ; Medial Forebrain Bundle - drug effects ; Medial Forebrain Bundle - physiopathology ; Motor Cortex - pathology ; Motor Cortex - physiopathology ; Motor task performance ; Movement disorders ; Neurons ; Neurons - drug effects ; Neurons - physiology ; Oscillations ; Oxidopamine - toxicity ; Parkinson's disease ; Parkinsonian Disorders - chemically induced ; Parkinsonian Disorders - physiopathology ; Parkinsonian Disorders - therapy ; Rats ; Rats, Sprague-Dawley ; Rhythms ; Rodents ; Solitary tract nucleus ; Statistics as Topic ; Stochasticity ; Studies ; subthalamic nucleus ; Subthalamic Nucleus - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2012-12, Vol.76 (5), p.1030-1041</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 6, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-9297df04ada742e9f8c923524df68529a78b4c43edb0ed6e975fa300e9a1e22d3</citedby><cites>FETCH-LOGICAL-c586t-9297df04ada742e9f8c923524df68529a78b4c43edb0ed6e975fa300e9a1e22d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627312008860$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23217750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Ke, Ya</creatorcontrib><creatorcontrib>Chan, Danny C.W.</creatorcontrib><creatorcontrib>Qian, Zhong-Ming</creatorcontrib><creatorcontrib>Yung, Ken K.L.</creatorcontrib><creatorcontrib>Ko, Ho</creatorcontrib><creatorcontrib>Arbuthnott, Gordon W.</creatorcontrib><creatorcontrib>Yung, Wing-Ho</creatorcontrib><title>Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. ► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease.</description><subject>Action Potentials - physiology</subject><subject>Adrenergic Agents - toxicity</subject><subject>Afferent Pathways - physiology</subject><subject>Animals</subject><subject>Antiparkinson Agents - therapeutic use</subject><subject>Apomorphine - therapeutic use</subject><subject>Basal ganglia</subject><subject>Biophysics</subject><subject>Brain Mapping</subject><subject>Brain research</subject><subject>Central nervous system diseases</subject><subject>Cortex (motor)</subject><subject>Deep brain stimulation</subject><subject>Deep Brain Stimulation - methods</subject><subject>Disease Models, Animal</subject><subject>Dominance</subject><subject>Dopamine</subject><subject>EEG</subject><subject>Electrical stimuli</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>Electroencephalography</subject><subject>Electrophysiological recording</subject><subject>Eusebio</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Experiments</subject><subject>Firing pattern</subject><subject>Fourier transforms</subject><subject>Functional Laterality</subject><subject>Globus pallidus</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Medial Forebrain Bundle - drug effects</subject><subject>Medial Forebrain Bundle - physiopathology</subject><subject>Motor Cortex - pathology</subject><subject>Motor Cortex - physiopathology</subject><subject>Motor task performance</subject><subject>Movement disorders</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Oscillations</subject><subject>Oxidopamine - toxicity</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - chemically induced</subject><subject>Parkinsonian Disorders - physiopathology</subject><subject>Parkinsonian Disorders - therapy</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rhythms</subject><subject>Rodents</subject><subject>Solitary tract nucleus</subject><subject>Statistics as Topic</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>subthalamic nucleus</subject><subject>Subthalamic Nucleus - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQQIMo7rj6D0QavHjptvLRnc5F0Fl3XVhRdAVvIZNUY8aeZEzS4v57M87qwYN4CoFXFfIeIY8pdBTo8HzbBVxSDB0DyjpQHXB2h6woKNkKqtRdsoJRDe3AJD8hD3LeAlDRK3qfnDDOqJQ9rMjn6y-YzB6X4m1zhrhvXiXjQ_Ox-N0ym-JjaOr1vUlffcgxeBOaD6bk5swntGW-aS7DNC8YLObmbSwxNeuYCv54SO5NZs746PY8JZ_OX1-v37RX7y4u1y-vWtuPQ2kVU9JNIIwzUjBU02gV4z0TbhrGnikjx42wgqPbALoBlewnwwFQGYqMOX5Knh337lP8tmAueuezxXk2AeOSNWWyClAKxv9AeXWiJIeKPv0L3cYlhfoRTXvgoxjZwCsljpRNMeeEk94nvzPpRlPQh0h6q4-R9CGSBqVrpDr25Hb5stmh-zP0u0oFXhwBrOK-e0w6W39Q7H5J1y76f7_wE6PSpDI</recordid><startdate>20121206</startdate><enddate>20121206</enddate><creator>Li, Qian</creator><creator>Ke, Ya</creator><creator>Chan, Danny C.W.</creator><creator>Qian, Zhong-Ming</creator><creator>Yung, Ken K.L.</creator><creator>Ko, Ho</creator><creator>Arbuthnott, Gordon W.</creator><creator>Yung, Wing-Ho</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20121206</creationdate><title>Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex</title><author>Li, Qian ; Ke, Ya ; Chan, Danny C.W. ; Qian, Zhong-Ming ; Yung, Ken K.L. ; Ko, Ho ; Arbuthnott, Gordon W. ; Yung, Wing-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-9297df04ada742e9f8c923524df68529a78b4c43edb0ed6e975fa300e9a1e22d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - physiology</topic><topic>Adrenergic Agents - toxicity</topic><topic>Afferent Pathways - physiology</topic><topic>Animals</topic><topic>Antiparkinson Agents - therapeutic use</topic><topic>Apomorphine - therapeutic use</topic><topic>Basal ganglia</topic><topic>Biophysics</topic><topic>Brain Mapping</topic><topic>Brain research</topic><topic>Central nervous system diseases</topic><topic>Cortex (motor)</topic><topic>Deep brain stimulation</topic><topic>Deep Brain Stimulation - methods</topic><topic>Disease Models, Animal</topic><topic>Dominance</topic><topic>Dopamine</topic><topic>EEG</topic><topic>Electrical stimuli</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>Electroencephalography</topic><topic>Electrophysiological recording</topic><topic>Eusebio</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Experiments</topic><topic>Firing pattern</topic><topic>Fourier transforms</topic><topic>Functional Laterality</topic><topic>Globus pallidus</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Medial Forebrain Bundle - drug effects</topic><topic>Medial Forebrain Bundle - physiopathology</topic><topic>Motor Cortex - pathology</topic><topic>Motor Cortex - physiopathology</topic><topic>Motor task performance</topic><topic>Movement disorders</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Oscillations</topic><topic>Oxidopamine - toxicity</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - chemically induced</topic><topic>Parkinsonian Disorders - physiopathology</topic><topic>Parkinsonian Disorders - therapy</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rhythms</topic><topic>Rodents</topic><topic>Solitary tract nucleus</topic><topic>Statistics as Topic</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>subthalamic nucleus</topic><topic>Subthalamic Nucleus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Ke, Ya</creatorcontrib><creatorcontrib>Chan, Danny C.W.</creatorcontrib><creatorcontrib>Qian, Zhong-Ming</creatorcontrib><creatorcontrib>Yung, Ken K.L.</creatorcontrib><creatorcontrib>Ko, Ho</creatorcontrib><creatorcontrib>Arbuthnott, Gordon W.</creatorcontrib><creatorcontrib>Yung, Wing-Ho</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qian</au><au>Ke, Ya</au><au>Chan, Danny C.W.</au><au>Qian, Zhong-Ming</au><au>Yung, Ken K.L.</au><au>Ko, Ho</au><au>Arbuthnott, Gordon W.</au><au>Yung, Wing-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2012-12-06</date><risdate>2012</risdate><volume>76</volume><issue>5</issue><spage>1030</spage><epage>1041</epage><pages>1030-1041</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. ► First simultaneous DBS and multiunit neuronal recordings in freely moving PD rats ► Details the pathological motor cortical activities following dopamine depletion ► Unequivocal identification of antidromic spikes during deep brain stimulation ► Provides a mechanism to explain therapeutic efficacy of deep brain stimulation Based on multielectrode recordings from freely behaving Parkinsonian rats, the study by Li et al. reveals a novel mechanism of therapeutic deep brain stimulation in Parkinson’s disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23217750</pmid><doi>10.1016/j.neuron.2012.09.032</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2012-12, Vol.76 (5), p.1030-1041
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_1272739908
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Action Potentials - physiology
Adrenergic Agents - toxicity
Afferent Pathways - physiology
Animals
Antiparkinson Agents - therapeutic use
Apomorphine - therapeutic use
Basal ganglia
Biophysics
Brain Mapping
Brain research
Central nervous system diseases
Cortex (motor)
Deep brain stimulation
Deep Brain Stimulation - methods
Disease Models, Animal
Dominance
Dopamine
EEG
Electrical stimuli
Electrodes
Electrodes, Implanted
Electroencephalography
Electrophysiological recording
Eusebio
Evoked Potentials, Motor - physiology
Experiments
Firing pattern
Fourier transforms
Functional Laterality
Globus pallidus
Locomotion - physiology
Male
Medial Forebrain Bundle - drug effects
Medial Forebrain Bundle - physiopathology
Motor Cortex - pathology
Motor Cortex - physiopathology
Motor task performance
Movement disorders
Neurons
Neurons - drug effects
Neurons - physiology
Oscillations
Oxidopamine - toxicity
Parkinson's disease
Parkinsonian Disorders - chemically induced
Parkinsonian Disorders - physiopathology
Parkinsonian Disorders - therapy
Rats
Rats, Sprague-Dawley
Rhythms
Rodents
Solitary tract nucleus
Statistics as Topic
Stochasticity
Studies
subthalamic nucleus
Subthalamic Nucleus - physiology
title Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20Deep%20Brain%20Stimulation%20in%20Parkinsonian%20Rats%20Directly%20Influences%20Motor%20Cortex&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Li,%20Qian&rft.date=2012-12-06&rft.volume=76&rft.issue=5&rft.spage=1030&rft.epage=1041&rft.pages=1030-1041&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.09.032&rft_dat=%3Cproquest_cross%3E1237509730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503848263&rft_id=info:pmid/23217750&rft_els_id=S0896627312008860&rfr_iscdi=true