Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions

We investigated hydrothermal liquefaction of Nannochloropsis sp. at different temperatures (250–400 °C), times (10–90 min), water densities (0.3–0.5 g/mL), and biomass loadings (5–35 wt %). Liquefaction produced a biocrude with light and heavy fractions, along with gaseous, aqueous, and solid by-pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomass & bioenergy 2012-11, Vol.46, p.317-331
Hauptverfasser: Valdez, Peter J., Nelson, Michael C., Wang, Henry Y., Lin, Xiaoxia Nina, Savage, Phillip E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue
container_start_page 317
container_title Biomass & bioenergy
container_volume 46
creator Valdez, Peter J.
Nelson, Michael C.
Wang, Henry Y.
Lin, Xiaoxia Nina
Savage, Phillip E.
description We investigated hydrothermal liquefaction of Nannochloropsis sp. at different temperatures (250–400 °C), times (10–90 min), water densities (0.3–0.5 g/mL), and biomass loadings (5–35 wt %). Liquefaction produced a biocrude with light and heavy fractions, along with gaseous, aqueous, and solid by-product fractions. The gravimetric yields of the product fractions from experiments at 250 °C summed to an average of 100 ± 4 wt %, showing mass balance closure at 250 °C. The gravimetric yields of the product fractions are independent of water density at 400 °C. Increasing the biomass loading increases the biocrude yield from 36 to 46 wt %. The yields of light and heavy biocrude depend on reaction time and temperature, but their combined yield depends primarily on temperature. Regardless of reaction time and temperature, the yield of products distributed to the aqueous phase is 51 ± 5 wt % and the light biocrude is 75 ± 1 wt % C. Two-thirds of the N in the alga is immediately distributed to the aqueous phase and up to 84% can be partitioned there. Up to 85% of the P is distributed to the aqueous phase in the form of free phosphate. Thus, N and P can be recovered in the aqueous phase for nutrient recycling. Up to 80% of the chemical energy in the alga is retained within the biocrude. The quantitative results reported herein provide the basis for a reaction network for algae liquefaction. [Display omitted] ► We systematically studied the processing effects on the liquefaction of a microalga. ► We are first to develop a reaction network for the liquefaction of algae. ► More severe reaction conditions produce more of the light biocrude fraction. ► Up to 80% of the chemical energy can be recovered in the biocrude product. ► Over 80% of N and P can be recovered in the aqueous phase for process reuse.
doi_str_mv 10.1016/j.biombioe.2012.08.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1272724136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0961953412003236</els_id><sourcerecordid>1272724136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-3771ba01b8d63ee54d628d5e2f57e86473c942ec272e08769ec7a75eff1645e43</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxaOKSl1avgLkgsQlwXb8J-EEqoAiVXAoPVteZ0y9cuLF462UQ787jlK4chjN5ffmzbypqteUtJRQ-f7Q7n2cSkHLCGUt6VtChrNqR3vVNWwgw4tqRwZJm0F0_KJ6iXgghHLC6a56ulnGFPMDpMmEOvjfJ3DGZh_nOrr6u5nnaB9CTPGIHms8th_quwUzTCZ7W2M-jcsKHlO0gFg_muTNPgDWZh5LmbCsukIUi5UaTzbXLm0WeFWdOxMQXj33y-r-y-ef1zfN7Y-v364_3TaWS5GbTim6N4Tu-1F2AIKPkvWjAOaEgl5y1dmBM7BMMSC9kgNYZZQA56jkAnh3Wb3b5pYNyoWY9eTRQghmhnhCTYtSMU47WVC5oTZFxAROH5OfTFo0JXrNWx_037z1mrcmvS55F-HbZw-D1oRy42w9_lMzKWVPu65wbzbOmajNr1SY-7sySJSfCEEUKcTHjYASyaOHpNF6mC2MPoHNeoz-f8v8AZJYpVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272724136</pqid></control><display><type>article</type><title>Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions</title><source>Elsevier ScienceDirect Journals</source><creator>Valdez, Peter J. ; Nelson, Michael C. ; Wang, Henry Y. ; Lin, Xiaoxia Nina ; Savage, Phillip E.</creator><creatorcontrib>Valdez, Peter J. ; Nelson, Michael C. ; Wang, Henry Y. ; Lin, Xiaoxia Nina ; Savage, Phillip E.</creatorcontrib><description>We investigated hydrothermal liquefaction of Nannochloropsis sp. at different temperatures (250–400 °C), times (10–90 min), water densities (0.3–0.5 g/mL), and biomass loadings (5–35 wt %). Liquefaction produced a biocrude with light and heavy fractions, along with gaseous, aqueous, and solid by-product fractions. The gravimetric yields of the product fractions from experiments at 250 °C summed to an average of 100 ± 4 wt %, showing mass balance closure at 250 °C. The gravimetric yields of the product fractions are independent of water density at 400 °C. Increasing the biomass loading increases the biocrude yield from 36 to 46 wt %. The yields of light and heavy biocrude depend on reaction time and temperature, but their combined yield depends primarily on temperature. Regardless of reaction time and temperature, the yield of products distributed to the aqueous phase is 51 ± 5 wt % and the light biocrude is 75 ± 1 wt % C. Two-thirds of the N in the alga is immediately distributed to the aqueous phase and up to 84% can be partitioned there. Up to 85% of the P is distributed to the aqueous phase in the form of free phosphate. Thus, N and P can be recovered in the aqueous phase for nutrient recycling. Up to 80% of the chemical energy in the alga is retained within the biocrude. The quantitative results reported herein provide the basis for a reaction network for algae liquefaction. [Display omitted] ► We systematically studied the processing effects on the liquefaction of a microalga. ► We are first to develop a reaction network for the liquefaction of algae. ► More severe reaction conditions produce more of the light biocrude fraction. ► Up to 80% of the chemical energy can be recovered in the biocrude product. ► Over 80% of N and P can be recovered in the aqueous phase for process reuse.</description><identifier>ISSN: 0961-9534</identifier><identifier>EISSN: 1873-2909</identifier><identifier>DOI: 10.1016/j.biombioe.2012.08.009</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>bioenergy ; Biofuel ; Biofuel production ; Biological and medical sciences ; biomass ; Biomass conversion ; Biotechnology ; Energy ; Fundamental and applied biological sciences. Psychology ; Industrial applications and implications. Economical aspects ; Liquefaction ; Microalgae ; Nannochloropsis ; temperature ; Thermochemical</subject><ispartof>Biomass &amp; bioenergy, 2012-11, Vol.46, p.317-331</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-3771ba01b8d63ee54d628d5e2f57e86473c942ec272e08769ec7a75eff1645e43</citedby><cites>FETCH-LOGICAL-c465t-3771ba01b8d63ee54d628d5e2f57e86473c942ec272e08769ec7a75eff1645e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0961953412003236$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26668133$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Valdez, Peter J.</creatorcontrib><creatorcontrib>Nelson, Michael C.</creatorcontrib><creatorcontrib>Wang, Henry Y.</creatorcontrib><creatorcontrib>Lin, Xiaoxia Nina</creatorcontrib><creatorcontrib>Savage, Phillip E.</creatorcontrib><title>Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions</title><title>Biomass &amp; bioenergy</title><description>We investigated hydrothermal liquefaction of Nannochloropsis sp. at different temperatures (250–400 °C), times (10–90 min), water densities (0.3–0.5 g/mL), and biomass loadings (5–35 wt %). Liquefaction produced a biocrude with light and heavy fractions, along with gaseous, aqueous, and solid by-product fractions. The gravimetric yields of the product fractions from experiments at 250 °C summed to an average of 100 ± 4 wt %, showing mass balance closure at 250 °C. The gravimetric yields of the product fractions are independent of water density at 400 °C. Increasing the biomass loading increases the biocrude yield from 36 to 46 wt %. The yields of light and heavy biocrude depend on reaction time and temperature, but their combined yield depends primarily on temperature. Regardless of reaction time and temperature, the yield of products distributed to the aqueous phase is 51 ± 5 wt % and the light biocrude is 75 ± 1 wt % C. Two-thirds of the N in the alga is immediately distributed to the aqueous phase and up to 84% can be partitioned there. Up to 85% of the P is distributed to the aqueous phase in the form of free phosphate. Thus, N and P can be recovered in the aqueous phase for nutrient recycling. Up to 80% of the chemical energy in the alga is retained within the biocrude. The quantitative results reported herein provide the basis for a reaction network for algae liquefaction. [Display omitted] ► We systematically studied the processing effects on the liquefaction of a microalga. ► We are first to develop a reaction network for the liquefaction of algae. ► More severe reaction conditions produce more of the light biocrude fraction. ► Up to 80% of the chemical energy can be recovered in the biocrude product. ► Over 80% of N and P can be recovered in the aqueous phase for process reuse.</description><subject>bioenergy</subject><subject>Biofuel</subject><subject>Biofuel production</subject><subject>Biological and medical sciences</subject><subject>biomass</subject><subject>Biomass conversion</subject><subject>Biotechnology</subject><subject>Energy</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Liquefaction</subject><subject>Microalgae</subject><subject>Nannochloropsis</subject><subject>temperature</subject><subject>Thermochemical</subject><issn>0961-9534</issn><issn>1873-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxaOKSl1avgLkgsQlwXb8J-EEqoAiVXAoPVteZ0y9cuLF462UQ787jlK4chjN5ffmzbypqteUtJRQ-f7Q7n2cSkHLCGUt6VtChrNqR3vVNWwgw4tqRwZJm0F0_KJ6iXgghHLC6a56ulnGFPMDpMmEOvjfJ3DGZh_nOrr6u5nnaB9CTPGIHms8th_quwUzTCZ7W2M-jcsKHlO0gFg_muTNPgDWZh5LmbCsukIUi5UaTzbXLm0WeFWdOxMQXj33y-r-y-ef1zfN7Y-v364_3TaWS5GbTim6N4Tu-1F2AIKPkvWjAOaEgl5y1dmBM7BMMSC9kgNYZZQA56jkAnh3Wb3b5pYNyoWY9eTRQghmhnhCTYtSMU47WVC5oTZFxAROH5OfTFo0JXrNWx_037z1mrcmvS55F-HbZw-D1oRy42w9_lMzKWVPu65wbzbOmajNr1SY-7sySJSfCEEUKcTHjYASyaOHpNF6mC2MPoHNeoz-f8v8AZJYpVY</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Valdez, Peter J.</creator><creator>Nelson, Michael C.</creator><creator>Wang, Henry Y.</creator><creator>Lin, Xiaoxia Nina</creator><creator>Savage, Phillip E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20121101</creationdate><title>Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions</title><author>Valdez, Peter J. ; Nelson, Michael C. ; Wang, Henry Y. ; Lin, Xiaoxia Nina ; Savage, Phillip E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-3771ba01b8d63ee54d628d5e2f57e86473c942ec272e08769ec7a75eff1645e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>bioenergy</topic><topic>Biofuel</topic><topic>Biofuel production</topic><topic>Biological and medical sciences</topic><topic>biomass</topic><topic>Biomass conversion</topic><topic>Biotechnology</topic><topic>Energy</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Liquefaction</topic><topic>Microalgae</topic><topic>Nannochloropsis</topic><topic>temperature</topic><topic>Thermochemical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valdez, Peter J.</creatorcontrib><creatorcontrib>Nelson, Michael C.</creatorcontrib><creatorcontrib>Wang, Henry Y.</creatorcontrib><creatorcontrib>Lin, Xiaoxia Nina</creatorcontrib><creatorcontrib>Savage, Phillip E.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomass &amp; bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valdez, Peter J.</au><au>Nelson, Michael C.</au><au>Wang, Henry Y.</au><au>Lin, Xiaoxia Nina</au><au>Savage, Phillip E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions</atitle><jtitle>Biomass &amp; bioenergy</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>46</volume><spage>317</spage><epage>331</epage><pages>317-331</pages><issn>0961-9534</issn><eissn>1873-2909</eissn><abstract>We investigated hydrothermal liquefaction of Nannochloropsis sp. at different temperatures (250–400 °C), times (10–90 min), water densities (0.3–0.5 g/mL), and biomass loadings (5–35 wt %). Liquefaction produced a biocrude with light and heavy fractions, along with gaseous, aqueous, and solid by-product fractions. The gravimetric yields of the product fractions from experiments at 250 °C summed to an average of 100 ± 4 wt %, showing mass balance closure at 250 °C. The gravimetric yields of the product fractions are independent of water density at 400 °C. Increasing the biomass loading increases the biocrude yield from 36 to 46 wt %. The yields of light and heavy biocrude depend on reaction time and temperature, but their combined yield depends primarily on temperature. Regardless of reaction time and temperature, the yield of products distributed to the aqueous phase is 51 ± 5 wt % and the light biocrude is 75 ± 1 wt % C. Two-thirds of the N in the alga is immediately distributed to the aqueous phase and up to 84% can be partitioned there. Up to 85% of the P is distributed to the aqueous phase in the form of free phosphate. Thus, N and P can be recovered in the aqueous phase for nutrient recycling. Up to 80% of the chemical energy in the alga is retained within the biocrude. The quantitative results reported herein provide the basis for a reaction network for algae liquefaction. [Display omitted] ► We systematically studied the processing effects on the liquefaction of a microalga. ► We are first to develop a reaction network for the liquefaction of algae. ► More severe reaction conditions produce more of the light biocrude fraction. ► Up to 80% of the chemical energy can be recovered in the biocrude product. ► Over 80% of N and P can be recovered in the aqueous phase for process reuse.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.biombioe.2012.08.009</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0961-9534
ispartof Biomass & bioenergy, 2012-11, Vol.46, p.317-331
issn 0961-9534
1873-2909
language eng
recordid cdi_proquest_miscellaneous_1272724136
source Elsevier ScienceDirect Journals
subjects bioenergy
Biofuel
Biofuel production
Biological and medical sciences
biomass
Biomass conversion
Biotechnology
Energy
Fundamental and applied biological sciences. Psychology
Industrial applications and implications. Economical aspects
Liquefaction
Microalgae
Nannochloropsis
temperature
Thermochemical
title Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20liquefaction%20of%20Nannochloropsis%20sp.:%20Systematic%20study%20of%20process%20variables%20and%20analysis%20of%20the%20product%20fractions&rft.jtitle=Biomass%20&%20bioenergy&rft.au=Valdez,%20Peter%20J.&rft.date=2012-11-01&rft.volume=46&rft.spage=317&rft.epage=331&rft.pages=317-331&rft.issn=0961-9534&rft.eissn=1873-2909&rft_id=info:doi/10.1016/j.biombioe.2012.08.009&rft_dat=%3Cproquest_cross%3E1272724136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272724136&rft_id=info:pmid/&rft_els_id=S0961953412003236&rfr_iscdi=true