On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach
Abstract Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy subjects. Glucose–insulin models are widely used in the development of new predictive control strategies in order to maintain the plasma glucose concentration within a narrow range,...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2012-12, Vol.108 (3), p.993-1001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1001 |
---|---|
container_issue | 3 |
container_start_page | 993 |
container_title | Computer methods and programs in biomedicine |
container_volume | 108 |
creator | de Pereda, Diego Romero-Vivo, Sergio Ricarte, Beatriz Bondia, Jorge |
description | Abstract Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy subjects. Glucose–insulin models are widely used in the development of new predictive control strategies in order to maintain the plasma glucose concentration within a narrow range, avoiding the risks of high or low levels of glucose in the blood. However, due to the high variability of this biological process, the exact values of the model parameters are unknown, but they can be bounded by intervals. In this work, the computation of tight glucose concentration bounds under parametric uncertainty for the development of robust prediction tools is addressed. A monotonicity analysis of the model states and parameters is performed. An analysis of critical points, state transformations and application of differential inequalities are proposed to deal with non-monotone parameters. In contrast to current methods, the guaranteed simulations for the glucose–insulin model are carried out by considering uncertainty in all the parameters and initial conditions. Furthermore, no time-discretisation is required, which helps to reduce the computational time significantly. As a result, we are able to compute a tight glucose envelope that bounds all the possible patient's glycemic responses with low computational effort. |
doi_str_mv | 10.1016/j.cmpb.2012.05.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1272719789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260712001502</els_id><sourcerecordid>1151036034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-269d1fea95b59e2352cab25bc6ead264d62d947665cfe8dcdd9972878821a6573</originalsourceid><addsrcrecordid>eNqFks-P1SAQx4nRuM_Vf8CD4WLipRXoA1pjNtls_JVssgf1TChMXZ4tVKCb1L9e6ntq4kFPE5jPd2bgOwg9paSmhIqXh9pMc18zQllNeF3CPbSjrWSV5ILfR7sCdRUTRJ6hRykdCCGMc_EQnTEm96yVcoe-33icbwHPEawz2QWPw4C_jIsJCbAJ3oDPUf9MLN5CxG47V3O5Khl8p6PTvRtdXksG53UGTLEtd5AhvcKXeAo-5OABpzVlmBLW8xyDNreP0YNBjwmenOI5-vz2zaer99X1zbsPV5fXleG0zWX-ztIBdMd73gFrODO6Z7w3ArRlYm8Fs91eCsHNAK011nadLI9rW0a14LI5Ry-OdUvbbwukrCaXDIyj9hCWpCiTTNJOtt3_UcopaQRp9gVlR9TEkFKEQc3RTTquihK12aMOarNHbfYowlUJRfTsVH_pJ7C_Jb_8KMDzE6CT0eMQtTcu_eGEaEgnReFeHzkoH3fnIKpkih-mmBjBZGWD-_ccF3_Jzei8Kx2_wgrpEJboiyWKqlQ06uO2SNseUUYI5YQ1PwDh_sPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151036034</pqid></control><display><type>article</type><title>On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>de Pereda, Diego ; Romero-Vivo, Sergio ; Ricarte, Beatriz ; Bondia, Jorge</creator><creatorcontrib>de Pereda, Diego ; Romero-Vivo, Sergio ; Ricarte, Beatriz ; Bondia, Jorge</creatorcontrib><description>Abstract Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy subjects. Glucose–insulin models are widely used in the development of new predictive control strategies in order to maintain the plasma glucose concentration within a narrow range, avoiding the risks of high or low levels of glucose in the blood. However, due to the high variability of this biological process, the exact values of the model parameters are unknown, but they can be bounded by intervals. In this work, the computation of tight glucose concentration bounds under parametric uncertainty for the development of robust prediction tools is addressed. A monotonicity analysis of the model states and parameters is performed. An analysis of critical points, state transformations and application of differential inequalities are proposed to deal with non-monotone parameters. In contrast to current methods, the guaranteed simulations for the glucose–insulin model are carried out by considering uncertainty in all the parameters and initial conditions. Furthermore, no time-discretisation is required, which helps to reduce the computational time significantly. As a result, we are able to compute a tight glucose envelope that bounds all the possible patient's glycemic responses with low computational effort.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2012.05.012</identifier><identifier>PMID: 22742877</identifier><language>eng</language><publisher>Kidlington: Elsevier Ireland Ltd</publisher><subject>Biological and medical sciences ; Blood Glucose - analysis ; Blood glucose prediction ; Compartmental models ; Diabetes Mellitus, Type 1 - blood ; Glucose–insulin models ; Humans ; Insulin - blood ; Internal Medicine ; Interval simulation ; Medical sciences ; Other ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Reproducibility of Results ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Type 1 diabetes ; Uncertainty</subject><ispartof>Computer methods and programs in biomedicine, 2012-12, Vol.108 (3), p.993-1001</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2012 Elsevier Ireland Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-269d1fea95b59e2352cab25bc6ead264d62d947665cfe8dcdd9972878821a6573</citedby><cites>FETCH-LOGICAL-c518t-269d1fea95b59e2352cab25bc6ead264d62d947665cfe8dcdd9972878821a6573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmpb.2012.05.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26630976$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22742877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Pereda, Diego</creatorcontrib><creatorcontrib>Romero-Vivo, Sergio</creatorcontrib><creatorcontrib>Ricarte, Beatriz</creatorcontrib><creatorcontrib>Bondia, Jorge</creatorcontrib><title>On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy subjects. Glucose–insulin models are widely used in the development of new predictive control strategies in order to maintain the plasma glucose concentration within a narrow range, avoiding the risks of high or low levels of glucose in the blood. However, due to the high variability of this biological process, the exact values of the model parameters are unknown, but they can be bounded by intervals. In this work, the computation of tight glucose concentration bounds under parametric uncertainty for the development of robust prediction tools is addressed. A monotonicity analysis of the model states and parameters is performed. An analysis of critical points, state transformations and application of differential inequalities are proposed to deal with non-monotone parameters. In contrast to current methods, the guaranteed simulations for the glucose–insulin model are carried out by considering uncertainty in all the parameters and initial conditions. Furthermore, no time-discretisation is required, which helps to reduce the computational time significantly. As a result, we are able to compute a tight glucose envelope that bounds all the possible patient's glycemic responses with low computational effort.</description><subject>Biological and medical sciences</subject><subject>Blood Glucose - analysis</subject><subject>Blood glucose prediction</subject><subject>Compartmental models</subject><subject>Diabetes Mellitus, Type 1 - blood</subject><subject>Glucose–insulin models</subject><subject>Humans</subject><subject>Insulin - blood</subject><subject>Internal Medicine</subject><subject>Interval simulation</subject><subject>Medical sciences</subject><subject>Other</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Reproducibility of Results</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Type 1 diabetes</subject><subject>Uncertainty</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks-P1SAQx4nRuM_Vf8CD4WLipRXoA1pjNtls_JVssgf1TChMXZ4tVKCb1L9e6ntq4kFPE5jPd2bgOwg9paSmhIqXh9pMc18zQllNeF3CPbSjrWSV5ILfR7sCdRUTRJ6hRykdCCGMc_EQnTEm96yVcoe-33icbwHPEawz2QWPw4C_jIsJCbAJ3oDPUf9MLN5CxG47V3O5Khl8p6PTvRtdXksG53UGTLEtd5AhvcKXeAo-5OABpzVlmBLW8xyDNreP0YNBjwmenOI5-vz2zaer99X1zbsPV5fXleG0zWX-ztIBdMd73gFrODO6Z7w3ArRlYm8Fs91eCsHNAK011nadLI9rW0a14LI5Ry-OdUvbbwukrCaXDIyj9hCWpCiTTNJOtt3_UcopaQRp9gVlR9TEkFKEQc3RTTquihK12aMOarNHbfYowlUJRfTsVH_pJ7C_Jb_8KMDzE6CT0eMQtTcu_eGEaEgnReFeHzkoH3fnIKpkih-mmBjBZGWD-_ccF3_Jzei8Kx2_wgrpEJboiyWKqlQ06uO2SNseUUYI5YQ1PwDh_sPA</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>de Pereda, Diego</creator><creator>Romero-Vivo, Sergio</creator><creator>Ricarte, Beatriz</creator><creator>Bondia, Jorge</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20121201</creationdate><title>On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach</title><author>de Pereda, Diego ; Romero-Vivo, Sergio ; Ricarte, Beatriz ; Bondia, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-269d1fea95b59e2352cab25bc6ead264d62d947665cfe8dcdd9972878821a6573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Blood Glucose - analysis</topic><topic>Blood glucose prediction</topic><topic>Compartmental models</topic><topic>Diabetes Mellitus, Type 1 - blood</topic><topic>Glucose–insulin models</topic><topic>Humans</topic><topic>Insulin - blood</topic><topic>Internal Medicine</topic><topic>Interval simulation</topic><topic>Medical sciences</topic><topic>Other</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Reproducibility of Results</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Type 1 diabetes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Pereda, Diego</creatorcontrib><creatorcontrib>Romero-Vivo, Sergio</creatorcontrib><creatorcontrib>Ricarte, Beatriz</creatorcontrib><creatorcontrib>Bondia, Jorge</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Pereda, Diego</au><au>Romero-Vivo, Sergio</au><au>Ricarte, Beatriz</au><au>Bondia, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>108</volume><issue>3</issue><spage>993</spage><epage>1001</epage><pages>993-1001</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy subjects. Glucose–insulin models are widely used in the development of new predictive control strategies in order to maintain the plasma glucose concentration within a narrow range, avoiding the risks of high or low levels of glucose in the blood. However, due to the high variability of this biological process, the exact values of the model parameters are unknown, but they can be bounded by intervals. In this work, the computation of tight glucose concentration bounds under parametric uncertainty for the development of robust prediction tools is addressed. A monotonicity analysis of the model states and parameters is performed. An analysis of critical points, state transformations and application of differential inequalities are proposed to deal with non-monotone parameters. In contrast to current methods, the guaranteed simulations for the glucose–insulin model are carried out by considering uncertainty in all the parameters and initial conditions. Furthermore, no time-discretisation is required, which helps to reduce the computational time significantly. As a result, we are able to compute a tight glucose envelope that bounds all the possible patient's glycemic responses with low computational effort.</abstract><cop>Kidlington</cop><pub>Elsevier Ireland Ltd</pub><pmid>22742877</pmid><doi>10.1016/j.cmpb.2012.05.012</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2012-12, Vol.108 (3), p.993-1001 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_1272719789 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Biological and medical sciences Blood Glucose - analysis Blood glucose prediction Compartmental models Diabetes Mellitus, Type 1 - blood Glucose–insulin models Humans Insulin - blood Internal Medicine Interval simulation Medical sciences Other Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Reproducibility of Results Technology. Biomaterials. Equipments. Material. Instrumentation Type 1 diabetes Uncertainty |
title | On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20prediction%20of%20glucose%20concentration%20under%20intra-patient%20variability%20in%20type%201%20diabetes:%20A%20monotone%20systems%20approach&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=de%20Pereda,%20Diego&rft.date=2012-12-01&rft.volume=108&rft.issue=3&rft.spage=993&rft.epage=1001&rft.pages=993-1001&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2012.05.012&rft_dat=%3Cproquest_cross%3E1151036034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151036034&rft_id=info:pmid/22742877&rft_els_id=S0169260712001502&rfr_iscdi=true |