On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach

Abstract Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy subjects. Glucose–insulin models are widely used in the development of new predictive control strategies in order to maintain the plasma glucose concentration within a narrow range,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2012-12, Vol.108 (3), p.993-1001
Hauptverfasser: de Pereda, Diego, Romero-Vivo, Sergio, Ricarte, Beatriz, Bondia, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1001
container_issue 3
container_start_page 993
container_title Computer methods and programs in biomedicine
container_volume 108
creator de Pereda, Diego
Romero-Vivo, Sergio
Ricarte, Beatriz
Bondia, Jorge
description Abstract Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy subjects. Glucose–insulin models are widely used in the development of new predictive control strategies in order to maintain the plasma glucose concentration within a narrow range, avoiding the risks of high or low levels of glucose in the blood. However, due to the high variability of this biological process, the exact values of the model parameters are unknown, but they can be bounded by intervals. In this work, the computation of tight glucose concentration bounds under parametric uncertainty for the development of robust prediction tools is addressed. A monotonicity analysis of the model states and parameters is performed. An analysis of critical points, state transformations and application of differential inequalities are proposed to deal with non-monotone parameters. In contrast to current methods, the guaranteed simulations for the glucose–insulin model are carried out by considering uncertainty in all the parameters and initial conditions. Furthermore, no time-discretisation is required, which helps to reduce the computational time significantly. As a result, we are able to compute a tight glucose envelope that bounds all the possible patient's glycemic responses with low computational effort.
doi_str_mv 10.1016/j.cmpb.2012.05.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1272719789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260712001502</els_id><sourcerecordid>1151036034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-269d1fea95b59e2352cab25bc6ead264d62d947665cfe8dcdd9972878821a6573</originalsourceid><addsrcrecordid>eNqFks-P1SAQx4nRuM_Vf8CD4WLipRXoA1pjNtls_JVssgf1TChMXZ4tVKCb1L9e6ntq4kFPE5jPd2bgOwg9paSmhIqXh9pMc18zQllNeF3CPbSjrWSV5ILfR7sCdRUTRJ6hRykdCCGMc_EQnTEm96yVcoe-33icbwHPEawz2QWPw4C_jIsJCbAJ3oDPUf9MLN5CxG47V3O5Khl8p6PTvRtdXksG53UGTLEtd5AhvcKXeAo-5OABpzVlmBLW8xyDNreP0YNBjwmenOI5-vz2zaer99X1zbsPV5fXleG0zWX-ztIBdMd73gFrODO6Z7w3ArRlYm8Fs91eCsHNAK011nadLI9rW0a14LI5Ry-OdUvbbwukrCaXDIyj9hCWpCiTTNJOtt3_UcopaQRp9gVlR9TEkFKEQc3RTTquihK12aMOarNHbfYowlUJRfTsVH_pJ7C_Jb_8KMDzE6CT0eMQtTcu_eGEaEgnReFeHzkoH3fnIKpkih-mmBjBZGWD-_ccF3_Jzei8Kx2_wgrpEJboiyWKqlQ06uO2SNseUUYI5YQ1PwDh_sPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151036034</pqid></control><display><type>article</type><title>On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>de Pereda, Diego ; Romero-Vivo, Sergio ; Ricarte, Beatriz ; Bondia, Jorge</creator><creatorcontrib>de Pereda, Diego ; Romero-Vivo, Sergio ; Ricarte, Beatriz ; Bondia, Jorge</creatorcontrib><description>Abstract Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy subjects. Glucose–insulin models are widely used in the development of new predictive control strategies in order to maintain the plasma glucose concentration within a narrow range, avoiding the risks of high or low levels of glucose in the blood. However, due to the high variability of this biological process, the exact values of the model parameters are unknown, but they can be bounded by intervals. In this work, the computation of tight glucose concentration bounds under parametric uncertainty for the development of robust prediction tools is addressed. A monotonicity analysis of the model states and parameters is performed. An analysis of critical points, state transformations and application of differential inequalities are proposed to deal with non-monotone parameters. In contrast to current methods, the guaranteed simulations for the glucose–insulin model are carried out by considering uncertainty in all the parameters and initial conditions. Furthermore, no time-discretisation is required, which helps to reduce the computational time significantly. As a result, we are able to compute a tight glucose envelope that bounds all the possible patient's glycemic responses with low computational effort.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2012.05.012</identifier><identifier>PMID: 22742877</identifier><language>eng</language><publisher>Kidlington: Elsevier Ireland Ltd</publisher><subject>Biological and medical sciences ; Blood Glucose - analysis ; Blood glucose prediction ; Compartmental models ; Diabetes Mellitus, Type 1 - blood ; Glucose–insulin models ; Humans ; Insulin - blood ; Internal Medicine ; Interval simulation ; Medical sciences ; Other ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Reproducibility of Results ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Type 1 diabetes ; Uncertainty</subject><ispartof>Computer methods and programs in biomedicine, 2012-12, Vol.108 (3), p.993-1001</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2012 Elsevier Ireland Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-269d1fea95b59e2352cab25bc6ead264d62d947665cfe8dcdd9972878821a6573</citedby><cites>FETCH-LOGICAL-c518t-269d1fea95b59e2352cab25bc6ead264d62d947665cfe8dcdd9972878821a6573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmpb.2012.05.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26630976$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22742877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Pereda, Diego</creatorcontrib><creatorcontrib>Romero-Vivo, Sergio</creatorcontrib><creatorcontrib>Ricarte, Beatriz</creatorcontrib><creatorcontrib>Bondia, Jorge</creatorcontrib><title>On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy subjects. Glucose–insulin models are widely used in the development of new predictive control strategies in order to maintain the plasma glucose concentration within a narrow range, avoiding the risks of high or low levels of glucose in the blood. However, due to the high variability of this biological process, the exact values of the model parameters are unknown, but they can be bounded by intervals. In this work, the computation of tight glucose concentration bounds under parametric uncertainty for the development of robust prediction tools is addressed. A monotonicity analysis of the model states and parameters is performed. An analysis of critical points, state transformations and application of differential inequalities are proposed to deal with non-monotone parameters. In contrast to current methods, the guaranteed simulations for the glucose–insulin model are carried out by considering uncertainty in all the parameters and initial conditions. Furthermore, no time-discretisation is required, which helps to reduce the computational time significantly. As a result, we are able to compute a tight glucose envelope that bounds all the possible patient's glycemic responses with low computational effort.</description><subject>Biological and medical sciences</subject><subject>Blood Glucose - analysis</subject><subject>Blood glucose prediction</subject><subject>Compartmental models</subject><subject>Diabetes Mellitus, Type 1 - blood</subject><subject>Glucose–insulin models</subject><subject>Humans</subject><subject>Insulin - blood</subject><subject>Internal Medicine</subject><subject>Interval simulation</subject><subject>Medical sciences</subject><subject>Other</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Reproducibility of Results</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Type 1 diabetes</subject><subject>Uncertainty</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks-P1SAQx4nRuM_Vf8CD4WLipRXoA1pjNtls_JVssgf1TChMXZ4tVKCb1L9e6ntq4kFPE5jPd2bgOwg9paSmhIqXh9pMc18zQllNeF3CPbSjrWSV5ILfR7sCdRUTRJ6hRykdCCGMc_EQnTEm96yVcoe-33icbwHPEawz2QWPw4C_jIsJCbAJ3oDPUf9MLN5CxG47V3O5Khl8p6PTvRtdXksG53UGTLEtd5AhvcKXeAo-5OABpzVlmBLW8xyDNreP0YNBjwmenOI5-vz2zaer99X1zbsPV5fXleG0zWX-ztIBdMd73gFrODO6Z7w3ArRlYm8Fs91eCsHNAK011nadLI9rW0a14LI5Ry-OdUvbbwukrCaXDIyj9hCWpCiTTNJOtt3_UcopaQRp9gVlR9TEkFKEQc3RTTquihK12aMOarNHbfYowlUJRfTsVH_pJ7C_Jb_8KMDzE6CT0eMQtTcu_eGEaEgnReFeHzkoH3fnIKpkih-mmBjBZGWD-_ccF3_Jzei8Kx2_wgrpEJboiyWKqlQ06uO2SNseUUYI5YQ1PwDh_sPA</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>de Pereda, Diego</creator><creator>Romero-Vivo, Sergio</creator><creator>Ricarte, Beatriz</creator><creator>Bondia, Jorge</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20121201</creationdate><title>On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach</title><author>de Pereda, Diego ; Romero-Vivo, Sergio ; Ricarte, Beatriz ; Bondia, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-269d1fea95b59e2352cab25bc6ead264d62d947665cfe8dcdd9972878821a6573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Blood Glucose - analysis</topic><topic>Blood glucose prediction</topic><topic>Compartmental models</topic><topic>Diabetes Mellitus, Type 1 - blood</topic><topic>Glucose–insulin models</topic><topic>Humans</topic><topic>Insulin - blood</topic><topic>Internal Medicine</topic><topic>Interval simulation</topic><topic>Medical sciences</topic><topic>Other</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Reproducibility of Results</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Type 1 diabetes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Pereda, Diego</creatorcontrib><creatorcontrib>Romero-Vivo, Sergio</creatorcontrib><creatorcontrib>Ricarte, Beatriz</creatorcontrib><creatorcontrib>Bondia, Jorge</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Pereda, Diego</au><au>Romero-Vivo, Sergio</au><au>Ricarte, Beatriz</au><au>Bondia, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>108</volume><issue>3</issue><spage>993</spage><epage>1001</epage><pages>993-1001</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract Insulin therapy in type 1 diabetes aims to mimic the pattern of endogenous insulin secretion found in healthy subjects. Glucose–insulin models are widely used in the development of new predictive control strategies in order to maintain the plasma glucose concentration within a narrow range, avoiding the risks of high or low levels of glucose in the blood. However, due to the high variability of this biological process, the exact values of the model parameters are unknown, but they can be bounded by intervals. In this work, the computation of tight glucose concentration bounds under parametric uncertainty for the development of robust prediction tools is addressed. A monotonicity analysis of the model states and parameters is performed. An analysis of critical points, state transformations and application of differential inequalities are proposed to deal with non-monotone parameters. In contrast to current methods, the guaranteed simulations for the glucose–insulin model are carried out by considering uncertainty in all the parameters and initial conditions. Furthermore, no time-discretisation is required, which helps to reduce the computational time significantly. As a result, we are able to compute a tight glucose envelope that bounds all the possible patient's glycemic responses with low computational effort.</abstract><cop>Kidlington</cop><pub>Elsevier Ireland Ltd</pub><pmid>22742877</pmid><doi>10.1016/j.cmpb.2012.05.012</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2012-12, Vol.108 (3), p.993-1001
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_1272719789
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Biological and medical sciences
Blood Glucose - analysis
Blood glucose prediction
Compartmental models
Diabetes Mellitus, Type 1 - blood
Glucose–insulin models
Humans
Insulin - blood
Internal Medicine
Interval simulation
Medical sciences
Other
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Reproducibility of Results
Technology. Biomaterials. Equipments. Material. Instrumentation
Type 1 diabetes
Uncertainty
title On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20prediction%20of%20glucose%20concentration%20under%20intra-patient%20variability%20in%20type%201%20diabetes:%20A%20monotone%20systems%20approach&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=de%20Pereda,%20Diego&rft.date=2012-12-01&rft.volume=108&rft.issue=3&rft.spage=993&rft.epage=1001&rft.pages=993-1001&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2012.05.012&rft_dat=%3Cproquest_cross%3E1151036034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151036034&rft_id=info:pmid/22742877&rft_els_id=S0169260712001502&rfr_iscdi=true