Minimizing pump energy in a wastewater processing plant
This paper discusses energy savings in wastewater processing plant pump operations and proposes a pump system scheduling model to generate operational schedules to reduce energy consumption. A neural network algorithm is utilized to model pump energy consumption and fluid flow rate after pumping. Th...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2012-11, Vol.47 (1), p.505-514 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 1 |
container_start_page | 505 |
container_title | Energy (Oxford) |
container_volume | 47 |
creator | Zhang, Zijun Zeng, Yaohui Kusiak, Andrew |
description | This paper discusses energy savings in wastewater processing plant pump operations and proposes a pump system scheduling model to generate operational schedules to reduce energy consumption. A neural network algorithm is utilized to model pump energy consumption and fluid flow rate after pumping. The scheduling model is a mixed-integer nonlinear programming problem (MINLP). As solving a data-driven MINLP is challenging, a migrated particle swarm optimization algorithm is proposed. The modeling and optimization results show that the performance of the pump system can be significantly improved based on the computed schedules.
▸ Energy minimization of pumps is studied. ▸ Pump performance is measured with two parameters. ▸ A neural network algorithm is used to develop models. ▸ Pump configuration and control parameters are optimized. ▸ A migrated particle swarm optimization algorithm solves the model. |
doi_str_mv | 10.1016/j.energy.2012.08.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1272718059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544212007256</els_id><sourcerecordid>1272718059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-7ab23403d0a188e2e8e16500ce9581f3ddffb1b4b4279b9c3697ad979b6852a43</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRbMAifL4AySyQWLTMH7EsTdIqOIlFbGAri3HmVSu8ih2SlW-HpdULFmNF-fOXJ8kuSSQESDidpVhh365yygQmoHMgMujZAJMwDTnnJ4kpyGsACCXSk2S4tV1rnXfrlum6027Tsd06rrUpFsTBtyaAX269r3FEH6xxnTDeXJcmybgxWGeJYvHh4_Z83T-9vQyu59PLVNsmBampIwDq8AQKZGiRCJyAIsql6RmVVXXJSl5yWmhSmWZUIWpVHwLmVPD2VlyM-6NBT43GAbdumCxiR2w3wRNaEELIiFXEeUjan0fgsdar71rjd9pAnrvRq_0-Du9d6NB6ugmxq4PF0ywpqm96awLf1kqBOU5Y5G7Grna9NosfWQW73GRiC4FZ5BH4m4kMAr5cuh1sA47i5XzaAdd9e7_Kj8VfIau</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272718059</pqid></control><display><type>article</type><title>Minimizing pump energy in a wastewater processing plant</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Zijun ; Zeng, Yaohui ; Kusiak, Andrew</creator><creatorcontrib>Zhang, Zijun ; Zeng, Yaohui ; Kusiak, Andrew</creatorcontrib><description>This paper discusses energy savings in wastewater processing plant pump operations and proposes a pump system scheduling model to generate operational schedules to reduce energy consumption. A neural network algorithm is utilized to model pump energy consumption and fluid flow rate after pumping. The scheduling model is a mixed-integer nonlinear programming problem (MINLP). As solving a data-driven MINLP is challenging, a migrated particle swarm optimization algorithm is proposed. The modeling and optimization results show that the performance of the pump system can be significantly improved based on the computed schedules.
▸ Energy minimization of pumps is studied. ▸ Pump performance is measured with two parameters. ▸ A neural network algorithm is used to develop models. ▸ Pump configuration and control parameters are optimized. ▸ A migrated particle swarm optimization algorithm solves the model.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2012.08.048</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>algorithms ; Applied sciences ; Data mining ; Energy ; energy conservation ; Energy saving ; Exact sciences and technology ; Mixed-integer nonlinear programming ; Neural networks ; Particle swarm optimization ; Pump control ; wastewater</subject><ispartof>Energy (Oxford), 2012-11, Vol.47 (1), p.505-514</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-7ab23403d0a188e2e8e16500ce9581f3ddffb1b4b4279b9c3697ad979b6852a43</citedby><cites>FETCH-LOGICAL-c393t-7ab23403d0a188e2e8e16500ce9581f3ddffb1b4b4279b9c3697ad979b6852a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2012.08.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26624533$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zijun</creatorcontrib><creatorcontrib>Zeng, Yaohui</creatorcontrib><creatorcontrib>Kusiak, Andrew</creatorcontrib><title>Minimizing pump energy in a wastewater processing plant</title><title>Energy (Oxford)</title><description>This paper discusses energy savings in wastewater processing plant pump operations and proposes a pump system scheduling model to generate operational schedules to reduce energy consumption. A neural network algorithm is utilized to model pump energy consumption and fluid flow rate after pumping. The scheduling model is a mixed-integer nonlinear programming problem (MINLP). As solving a data-driven MINLP is challenging, a migrated particle swarm optimization algorithm is proposed. The modeling and optimization results show that the performance of the pump system can be significantly improved based on the computed schedules.
▸ Energy minimization of pumps is studied. ▸ Pump performance is measured with two parameters. ▸ A neural network algorithm is used to develop models. ▸ Pump configuration and control parameters are optimized. ▸ A migrated particle swarm optimization algorithm solves the model.</description><subject>algorithms</subject><subject>Applied sciences</subject><subject>Data mining</subject><subject>Energy</subject><subject>energy conservation</subject><subject>Energy saving</subject><subject>Exact sciences and technology</subject><subject>Mixed-integer nonlinear programming</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Pump control</subject><subject>wastewater</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRbMAifL4AySyQWLTMH7EsTdIqOIlFbGAri3HmVSu8ih2SlW-HpdULFmNF-fOXJ8kuSSQESDidpVhh365yygQmoHMgMujZAJMwDTnnJ4kpyGsACCXSk2S4tV1rnXfrlum6027Tsd06rrUpFsTBtyaAX269r3FEH6xxnTDeXJcmybgxWGeJYvHh4_Z83T-9vQyu59PLVNsmBampIwDq8AQKZGiRCJyAIsql6RmVVXXJSl5yWmhSmWZUIWpVHwLmVPD2VlyM-6NBT43GAbdumCxiR2w3wRNaEELIiFXEeUjan0fgsdar71rjd9pAnrvRq_0-Du9d6NB6ugmxq4PF0ywpqm96awLf1kqBOU5Y5G7Grna9NosfWQW73GRiC4FZ5BH4m4kMAr5cuh1sA47i5XzaAdd9e7_Kj8VfIau</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Zhang, Zijun</creator><creator>Zeng, Yaohui</creator><creator>Kusiak, Andrew</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20121101</creationdate><title>Minimizing pump energy in a wastewater processing plant</title><author>Zhang, Zijun ; Zeng, Yaohui ; Kusiak, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-7ab23403d0a188e2e8e16500ce9581f3ddffb1b4b4279b9c3697ad979b6852a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>algorithms</topic><topic>Applied sciences</topic><topic>Data mining</topic><topic>Energy</topic><topic>energy conservation</topic><topic>Energy saving</topic><topic>Exact sciences and technology</topic><topic>Mixed-integer nonlinear programming</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Pump control</topic><topic>wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zijun</creatorcontrib><creatorcontrib>Zeng, Yaohui</creatorcontrib><creatorcontrib>Kusiak, Andrew</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zijun</au><au>Zeng, Yaohui</au><au>Kusiak, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing pump energy in a wastewater processing plant</atitle><jtitle>Energy (Oxford)</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>47</volume><issue>1</issue><spage>505</spage><epage>514</epage><pages>505-514</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>This paper discusses energy savings in wastewater processing plant pump operations and proposes a pump system scheduling model to generate operational schedules to reduce energy consumption. A neural network algorithm is utilized to model pump energy consumption and fluid flow rate after pumping. The scheduling model is a mixed-integer nonlinear programming problem (MINLP). As solving a data-driven MINLP is challenging, a migrated particle swarm optimization algorithm is proposed. The modeling and optimization results show that the performance of the pump system can be significantly improved based on the computed schedules.
▸ Energy minimization of pumps is studied. ▸ Pump performance is measured with two parameters. ▸ A neural network algorithm is used to develop models. ▸ Pump configuration and control parameters are optimized. ▸ A migrated particle swarm optimization algorithm solves the model.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2012.08.048</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2012-11, Vol.47 (1), p.505-514 |
issn | 0360-5442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1272718059 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | algorithms Applied sciences Data mining Energy energy conservation Energy saving Exact sciences and technology Mixed-integer nonlinear programming Neural networks Particle swarm optimization Pump control wastewater |
title | Minimizing pump energy in a wastewater processing plant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20pump%20energy%20in%20a%20wastewater%20processing%20plant&rft.jtitle=Energy%20(Oxford)&rft.au=Zhang,%20Zijun&rft.date=2012-11-01&rft.volume=47&rft.issue=1&rft.spage=505&rft.epage=514&rft.pages=505-514&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2012.08.048&rft_dat=%3Cproquest_cross%3E1272718059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1272718059&rft_id=info:pmid/&rft_els_id=S0360544212007256&rfr_iscdi=true |