Cutting force model considering tool edge geometry for micro end milling process

The analysis of the cutting force in micro end milling plays an important role in characterizing the cutting process, as the tool wear and surface texture depend on the cutting forces. Because the depth of cut is larger than the tool edge radius in conventional cutting, the effect of the tool edge r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2008-02, Vol.22 (2), p.293-299
Hauptverfasser: Kang, Ik Soo, Kim, Jeong Suk, Seo, Yong Wie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 2
container_start_page 293
container_title Journal of mechanical science and technology
container_volume 22
creator Kang, Ik Soo
Kim, Jeong Suk
Seo, Yong Wie
description The analysis of the cutting force in micro end milling plays an important role in characterizing the cutting process, as the tool wear and surface texture depend on the cutting forces. Because the depth of cut is larger than the tool edge radius in conventional cutting, the effect of the tool edge radius can be ignored. However, in micro cutting, this radius has an influence on the cutting mechanism. In this study, an analytical cutting force model for micro end milling is proposed for predicting the cutting forces. The cutting force model, which considers the edge radius of the micro end mill, is simulated. The validity is investigated through the newly developed tool dynamometer for the micro end milling process. The predicted cutting forces were consistent with the experimental results.
doi_str_mv 10.1007/s12206-007-1110-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266758919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266758919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-7fd2ccc5c85e3d4c24c5730a7708cdef3fa0fd38aee84024c4f0676fbf069db33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG9FELxU89UmPcriFyzoQcFbyCaTpUvbrEkLu__elC4Kgqd5mTzzZuZF6JLgW4KxuIuEUlzmSeaEEJzvjtCMVKLMmaT8OGnBZM4r_nmKzmLcYFxSTsgMvS2Gvq-7deZ8MJC13kKTGd_F2kIY-733TQZ2DdkafAt92I9o1tYm-Aw6m1TTjOA2eAMxnqMTp5sIF4c6Rx-PD--L53z5-vSyuF_mhgnZ58JZaowpjCyAWW4oN4VgWAuBpbHgmNPYWSY1gOQ4vXKHS1G6VSqVXTE2RzeTb_r3a4DYq7aOBppGd-CHqAgtS1HIilQJvfqDbvwQurSdkpILIgQTCSITlO6KMYBT21C3OuwVwWqMWE0Rq1GOEatdmrk-GOtodOOC7kwdfwYpZlKWjCSOTlzcjplC-F3gf_Nv-1SMng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884717737</pqid></control><display><type>article</type><title>Cutting force model considering tool edge geometry for micro end milling process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kang, Ik Soo ; Kim, Jeong Suk ; Seo, Yong Wie</creator><creatorcontrib>Kang, Ik Soo ; Kim, Jeong Suk ; Seo, Yong Wie</creatorcontrib><description>The analysis of the cutting force in micro end milling plays an important role in characterizing the cutting process, as the tool wear and surface texture depend on the cutting forces. Because the depth of cut is larger than the tool edge radius in conventional cutting, the effect of the tool edge radius can be ignored. However, in micro cutting, this radius has an influence on the cutting mechanism. In this study, an analytical cutting force model for micro end milling is proposed for predicting the cutting forces. The cutting force model, which considers the edge radius of the micro end mill, is simulated. The validity is investigated through the newly developed tool dynamometer for the micro end milling process. The predicted cutting forces were consistent with the experimental results.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-007-1110-x</identifier><language>eng</language><publisher>Heidelberg: Korean Society of Mechanical Engineers</publisher><subject>Applied sciences ; Control ; Cutting ; Cutting force ; Cutting forces ; Cutting tools ; Cutting wear ; Dynamical Systems ; End milling cutters ; Engineering ; Exact sciences and technology ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Mechanical engineering. Machine design ; Texture ; Vibration</subject><ispartof>Journal of mechanical science and technology, 2008-02, Vol.22 (2), p.293-299</ispartof><rights>Korean Society of Mechanical Engineers 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-7fd2ccc5c85e3d4c24c5730a7708cdef3fa0fd38aee84024c4f0676fbf069db33</citedby><cites>FETCH-LOGICAL-c378t-7fd2ccc5c85e3d4c24c5730a7708cdef3fa0fd38aee84024c4f0676fbf069db33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12206-007-1110-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12206-007-1110-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20388631$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Ik Soo</creatorcontrib><creatorcontrib>Kim, Jeong Suk</creatorcontrib><creatorcontrib>Seo, Yong Wie</creatorcontrib><title>Cutting force model considering tool edge geometry for micro end milling process</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>The analysis of the cutting force in micro end milling plays an important role in characterizing the cutting process, as the tool wear and surface texture depend on the cutting forces. Because the depth of cut is larger than the tool edge radius in conventional cutting, the effect of the tool edge radius can be ignored. However, in micro cutting, this radius has an influence on the cutting mechanism. In this study, an analytical cutting force model for micro end milling is proposed for predicting the cutting forces. The cutting force model, which considers the edge radius of the micro end mill, is simulated. The validity is investigated through the newly developed tool dynamometer for the micro end milling process. The predicted cutting forces were consistent with the experimental results.</description><subject>Applied sciences</subject><subject>Control</subject><subject>Cutting</subject><subject>Cutting force</subject><subject>Cutting forces</subject><subject>Cutting tools</subject><subject>Cutting wear</subject><subject>Dynamical Systems</subject><subject>End milling cutters</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Mechanical engineering. Machine design</subject><subject>Texture</subject><subject>Vibration</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG9FELxU89UmPcriFyzoQcFbyCaTpUvbrEkLu__elC4Kgqd5mTzzZuZF6JLgW4KxuIuEUlzmSeaEEJzvjtCMVKLMmaT8OGnBZM4r_nmKzmLcYFxSTsgMvS2Gvq-7deZ8MJC13kKTGd_F2kIY-733TQZ2DdkafAt92I9o1tYm-Aw6m1TTjOA2eAMxnqMTp5sIF4c6Rx-PD--L53z5-vSyuF_mhgnZ58JZaowpjCyAWW4oN4VgWAuBpbHgmNPYWSY1gOQ4vXKHS1G6VSqVXTE2RzeTb_r3a4DYq7aOBppGd-CHqAgtS1HIilQJvfqDbvwQurSdkpILIgQTCSITlO6KMYBT21C3OuwVwWqMWE0Rq1GOEatdmrk-GOtodOOC7kwdfwYpZlKWjCSOTlzcjplC-F3gf_Nv-1SMng</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Kang, Ik Soo</creator><creator>Kim, Jeong Suk</creator><creator>Seo, Yong Wie</creator><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>20080201</creationdate><title>Cutting force model considering tool edge geometry for micro end milling process</title><author>Kang, Ik Soo ; Kim, Jeong Suk ; Seo, Yong Wie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-7fd2ccc5c85e3d4c24c5730a7708cdef3fa0fd38aee84024c4f0676fbf069db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Control</topic><topic>Cutting</topic><topic>Cutting force</topic><topic>Cutting forces</topic><topic>Cutting tools</topic><topic>Cutting wear</topic><topic>Dynamical Systems</topic><topic>End milling cutters</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Mechanical engineering. Machine design</topic><topic>Texture</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Ik Soo</creatorcontrib><creatorcontrib>Kim, Jeong Suk</creatorcontrib><creatorcontrib>Seo, Yong Wie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Ik Soo</au><au>Kim, Jeong Suk</au><au>Seo, Yong Wie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cutting force model considering tool edge geometry for micro end milling process</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2008-02-01</date><risdate>2008</risdate><volume>22</volume><issue>2</issue><spage>293</spage><epage>299</epage><pages>293-299</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>The analysis of the cutting force in micro end milling plays an important role in characterizing the cutting process, as the tool wear and surface texture depend on the cutting forces. Because the depth of cut is larger than the tool edge radius in conventional cutting, the effect of the tool edge radius can be ignored. However, in micro cutting, this radius has an influence on the cutting mechanism. In this study, an analytical cutting force model for micro end milling is proposed for predicting the cutting forces. The cutting force model, which considers the edge radius of the micro end mill, is simulated. The validity is investigated through the newly developed tool dynamometer for the micro end milling process. The predicted cutting forces were consistent with the experimental results.</abstract><cop>Heidelberg</cop><pub>Korean Society of Mechanical Engineers</pub><doi>10.1007/s12206-007-1110-x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1738-494X
ispartof Journal of mechanical science and technology, 2008-02, Vol.22 (2), p.293-299
issn 1738-494X
1976-3824
language eng
recordid cdi_proquest_miscellaneous_1266758919
source SpringerLink Journals - AutoHoldings
subjects Applied sciences
Control
Cutting
Cutting force
Cutting forces
Cutting tools
Cutting wear
Dynamical Systems
End milling cutters
Engineering
Exact sciences and technology
Industrial and Production Engineering
Mathematical models
Mechanical Engineering
Mechanical engineering. Machine design
Texture
Vibration
title Cutting force model considering tool edge geometry for micro end milling process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cutting%20force%20model%20considering%20tool%20edge%20geometry%20for%20micro%20end%20milling%20process&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Kang,%20Ik%20Soo&rft.date=2008-02-01&rft.volume=22&rft.issue=2&rft.spage=293&rft.epage=299&rft.pages=293-299&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-007-1110-x&rft_dat=%3Cproquest_cross%3E1266758919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884717737&rft_id=info:pmid/&rfr_iscdi=true