Numerical Simulation of Shock Wave Propagation using the Finite Difference Lattice Boltzmann Method
The shock wave process represents an abrupt change in fluid properties, in which finite variations in pressure, temperature, and density occur over the shock thickness which is comparable to the mean free path of the gas molecules involved. This shock wave fluid phenomenon is simulated by using the...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical science and technology 2002-10, Vol.16 (10), p.1327-1335 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1335 |
---|---|
container_issue | 10 |
container_start_page | 1327 |
container_title | Journal of mechanical science and technology |
container_volume | 16 |
creator | KANG, Ho-Keun TSUTAHARA, Michihisa RO, Ki-Deok LEE, Young-Ho |
description | The shock wave process represents an abrupt change in fluid properties, in which finite variations in pressure, temperature, and density occur over the shock thickness which is comparable to the mean free path of the gas molecules involved. This shock wave fluid phenomenon is simulated by using the finite difference lattice Boltzmann method (FDLBM). In this paper, a new model is proposed using the lattice BGK compressible fluid model in FDLBM for the purpose of speeding up the calculation as well as stabilizing the numerical scheme. The numerical results of the proposed model show good agreement with the theoretical predictions. |
doi_str_mv | 10.1007/BF02983840 |
format | Article |
fullrecord | <record><control><sourceid>nurimedia_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266757823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nurid>NODE00531520</nurid><sourcerecordid>NODE00531520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-fe407f8ec62b4839846c12fd2ccd920489e285dfc97318c92e72b264d6ff8f8e3</originalsourceid><addsrcrecordid>eNp9kd1rFDEUxYMoWFdf_AsCIogwNbnJ5OPRfqwW1laoom9Dmkm6qTPJNskI-tcb2WLFB5_OhfO7l8s5CD2n5JASIt8crQloxRQnD9AB1VJ0TAF_2GbJVMc1__oYPSnlhhABnNIDZM-X2eVgzYQvw7xMpoYUcfL4cpvsN_zFfHf4Y047c713lhLiNa5bh9chhurwSfDeZRetwxtTa2h6lKb6czYx4g-ubtP4FD3yZiru2Z2u0Of16afj993m4t3Z8dtNZ5lUtfOOE-mVswKuuGJacWEp-BGsHTUQrrQD1Y_easmoshqchCsQfBTeq7bHVujV_u4up9vFlTrMoVg3TSa6tJSBghCylwpYQ1_8g96kJcf23QBSSeiF0Pp_FCXQAgfScl2h13vK5lRKdn7Y5TCb_KNBw-9WhvtWGvzy7qQpLXSfTbSh3G9wLqUQf3FxaZYbg_nDnF-cnBLSM9oDYb8AvCGWrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021002017</pqid></control><display><type>article</type><title>Numerical Simulation of Shock Wave Propagation using the Finite Difference Lattice Boltzmann Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>KANG, Ho-Keun ; TSUTAHARA, Michihisa ; RO, Ki-Deok ; LEE, Young-Ho</creator><creatorcontrib>KANG, Ho-Keun ; TSUTAHARA, Michihisa ; RO, Ki-Deok ; LEE, Young-Ho</creatorcontrib><description>The shock wave process represents an abrupt change in fluid properties, in which finite variations in pressure, temperature, and density occur over the shock thickness which is comparable to the mean free path of the gas molecules involved. This shock wave fluid phenomenon is simulated by using the finite difference lattice Boltzmann method (FDLBM). In this paper, a new model is proposed using the lattice BGK compressible fluid model in FDLBM for the purpose of speeding up the calculation as well as stabilizing the numerical scheme. The numerical results of the proposed model show good agreement with the theoretical predictions.</description><identifier>ISSN: 1738-494X</identifier><identifier>ISSN: 1226-4865</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/BF02983840</identifier><language>eng</language><publisher>Seoul: 대한기계학회</publisher><subject>Compressible flows; shock and detonation phenomena ; Compressible fluids ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Density ; Exact sciences and technology ; Finite difference method ; Fluid dynamics ; Fluid flow ; Fluids ; Fundamental areas of phenomenology (including applications) ; Lattices ; Mathematical analysis ; Mathematical models ; Physics ; Shock wave propagation ; Shock-wave interactions and shock effects ; Shock-wave interactions and shockeffects ; Simulation ; Studies</subject><ispartof>Journal of mechanical science and technology, 2002-10, Vol.16 (10), p.1327-1335</ispartof><rights>2003 INIST-CNRS</rights><rights>The Korean Society of Mechanical Engineers (KSME) 2002</rights><rights>The Korean Society of Mechanical Engineers (KSME) 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-fe407f8ec62b4839846c12fd2ccd920489e285dfc97318c92e72b264d6ff8f8e3</citedby><cites>FETCH-LOGICAL-c378t-fe407f8ec62b4839846c12fd2ccd920489e285dfc97318c92e72b264d6ff8f8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14477660$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KANG, Ho-Keun</creatorcontrib><creatorcontrib>TSUTAHARA, Michihisa</creatorcontrib><creatorcontrib>RO, Ki-Deok</creatorcontrib><creatorcontrib>LEE, Young-Ho</creatorcontrib><title>Numerical Simulation of Shock Wave Propagation using the Finite Difference Lattice Boltzmann Method</title><title>Journal of mechanical science and technology</title><description>The shock wave process represents an abrupt change in fluid properties, in which finite variations in pressure, temperature, and density occur over the shock thickness which is comparable to the mean free path of the gas molecules involved. This shock wave fluid phenomenon is simulated by using the finite difference lattice Boltzmann method (FDLBM). In this paper, a new model is proposed using the lattice BGK compressible fluid model in FDLBM for the purpose of speeding up the calculation as well as stabilizing the numerical scheme. The numerical results of the proposed model show good agreement with the theoretical predictions.</description><subject>Compressible flows; shock and detonation phenomena</subject><subject>Compressible fluids</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Shock wave propagation</subject><subject>Shock-wave interactions and shock effects</subject><subject>Shock-wave interactions and shockeffects</subject><subject>Simulation</subject><subject>Studies</subject><issn>1738-494X</issn><issn>1226-4865</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kd1rFDEUxYMoWFdf_AsCIogwNbnJ5OPRfqwW1laoom9Dmkm6qTPJNskI-tcb2WLFB5_OhfO7l8s5CD2n5JASIt8crQloxRQnD9AB1VJ0TAF_2GbJVMc1__oYPSnlhhABnNIDZM-X2eVgzYQvw7xMpoYUcfL4cpvsN_zFfHf4Y047c713lhLiNa5bh9chhurwSfDeZRetwxtTa2h6lKb6czYx4g-ubtP4FD3yZiru2Z2u0Of16afj993m4t3Z8dtNZ5lUtfOOE-mVswKuuGJacWEp-BGsHTUQrrQD1Y_easmoshqchCsQfBTeq7bHVujV_u4up9vFlTrMoVg3TSa6tJSBghCylwpYQ1_8g96kJcf23QBSSeiF0Pp_FCXQAgfScl2h13vK5lRKdn7Y5TCb_KNBw-9WhvtWGvzy7qQpLXSfTbSh3G9wLqUQf3FxaZYbg_nDnF-cnBLSM9oDYb8AvCGWrA</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>KANG, Ho-Keun</creator><creator>TSUTAHARA, Michihisa</creator><creator>RO, Ki-Deok</creator><creator>LEE, Young-Ho</creator><general>대한기계학회</general><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><scope>DBRKI</scope><scope>TDB</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>20021001</creationdate><title>Numerical Simulation of Shock Wave Propagation using the Finite Difference Lattice Boltzmann Method</title><author>KANG, Ho-Keun ; TSUTAHARA, Michihisa ; RO, Ki-Deok ; LEE, Young-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-fe407f8ec62b4839846c12fd2ccd920489e285dfc97318c92e72b264d6ff8f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Compressible flows; shock and detonation phenomena</topic><topic>Compressible fluids</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Shock wave propagation</topic><topic>Shock-wave interactions and shock effects</topic><topic>Shock-wave interactions and shockeffects</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KANG, Ho-Keun</creatorcontrib><creatorcontrib>TSUTAHARA, Michihisa</creatorcontrib><creatorcontrib>RO, Ki-Deok</creatorcontrib><creatorcontrib>LEE, Young-Ho</creatorcontrib><collection>DBPIA - 디비피아</collection><collection>DBPIA</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KANG, Ho-Keun</au><au>TSUTAHARA, Michihisa</au><au>RO, Ki-Deok</au><au>LEE, Young-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Shock Wave Propagation using the Finite Difference Lattice Boltzmann Method</atitle><jtitle>Journal of mechanical science and technology</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>16</volume><issue>10</issue><spage>1327</spage><epage>1335</epage><pages>1327-1335</pages><issn>1738-494X</issn><issn>1226-4865</issn><eissn>1976-3824</eissn><abstract>The shock wave process represents an abrupt change in fluid properties, in which finite variations in pressure, temperature, and density occur over the shock thickness which is comparable to the mean free path of the gas molecules involved. This shock wave fluid phenomenon is simulated by using the finite difference lattice Boltzmann method (FDLBM). In this paper, a new model is proposed using the lattice BGK compressible fluid model in FDLBM for the purpose of speeding up the calculation as well as stabilizing the numerical scheme. The numerical results of the proposed model show good agreement with the theoretical predictions.</abstract><cop>Seoul</cop><pub>대한기계학회</pub><doi>10.1007/BF02983840</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-494X |
ispartof | Journal of mechanical science and technology, 2002-10, Vol.16 (10), p.1327-1335 |
issn | 1738-494X 1226-4865 1976-3824 |
language | eng |
recordid | cdi_proquest_miscellaneous_1266757823 |
source | SpringerLink Journals - AutoHoldings |
subjects | Compressible flows shock and detonation phenomena Compressible fluids Computational fluid dynamics Computational methods in fluid dynamics Density Exact sciences and technology Finite difference method Fluid dynamics Fluid flow Fluids Fundamental areas of phenomenology (including applications) Lattices Mathematical analysis Mathematical models Physics Shock wave propagation Shock-wave interactions and shock effects Shock-wave interactions and shockeffects Simulation Studies |
title | Numerical Simulation of Shock Wave Propagation using the Finite Difference Lattice Boltzmann Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nurimedia_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Shock%20Wave%20Propagation%20using%20the%20Finite%20Difference%20Lattice%20Boltzmann%20Method&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=KANG,%20Ho-Keun&rft.date=2002-10-01&rft.volume=16&rft.issue=10&rft.spage=1327&rft.epage=1335&rft.pages=1327-1335&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/BF02983840&rft_dat=%3Cnurimedia_proqu%3ENODE00531520%3C/nurimedia_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1021002017&rft_id=info:pmid/&rft_nurid=NODE00531520&rfr_iscdi=true |