A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis
High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and design 2010-09, Vol.240 (9), p.2225-2232 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2232 |
---|---|
container_issue | 9 |
container_start_page | 2225 |
container_title | Nuclear engineering and design |
container_volume | 240 |
creator | Mimouni, S. Archambeau, F. Boucker, M. Lavieville, J. Morel, C. |
description | High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required.
In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation Eddy Viscosity Models (EVM), especially the standard
K–
ɛ model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional.
The simulation of swirling flow generated by the mixing vanes plays an important role for the prediction of the CHF for the fuel assemblies. For this reason, according to
Mimouni et al. (2008b, 2009b), rotation effects and RSTM model are more specifically addressed in the paper.
Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with simpler geometries, the DEBORA case and the ASU-annular channel case. ASU-annular channel case has already been addressed in
Mimouni et al. (2008b, 2009b).
Then, a geometry closer to actual fuel assemblies is considered. It consists of a rectangular test section in which a 2
×
2 rod bundle equipped with a simple spacer grid with mixing vanes is inserted. The influence of the turbulence model on target variables linked to CHF limitation will be discussed. Moreover, the sensitivity to the mesh refinement will be particularly examined. The study of this case is a further step towards the modelling of the two-phase boiling flow in real-life grids and rod bundles. |
doi_str_mv | 10.1016/j.nucengdes.2009.11.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266756554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549309005792</els_id><sourcerecordid>1266756554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-ac7400fa11894cf9acbd98ac062fd508563fc1010069699a2c74cafbeff6bd613</originalsourceid><addsrcrecordid>eNqFkM1q3DAURkVoodOkz1BtAt3YleyxbC2H0D8IFEIC3Ylr6SrRoLGmunbDvEEfuzITsq02Wuh83706jH2UopZCqs_7elosTo8OqW6E0LWUtWjEBdvIoW-qvtO_3rCNEI2uuq1u37H3RHuxHt1s2N8dJ7Rpcjxlh5nPSx6XiJNFfkgOIx-BsDxOHPgdnqYUHXGaMxJxOB5zAvvEfSrB51QdnwrMxxRimB65j-mZQ2kuXAwW5lBa5sT9UmqBCA9jPBUA4okCXbG3HiLhh5f7kj18_XJ_8726_fntx83utrJtP8wV2H4rhAcpB721XoMdnR7ACtV414mhU623xYsQSiutoSm8BT-i92p0SraX7NO5t-z-e0GazSGQxRhhwrSQkY1Sfae6blvQ_ozanIgyenPM4QD5ZKQwq3uzN6_uzereSGmK-5K8fhkCZCH6DJMN9BpvWtFp0a4TdmcOy4__BMyGbFjlu5DRzsal8N9Z_wAf3aHB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266756554</pqid></control><display><type>article</type><title>A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mimouni, S. ; Archambeau, F. ; Boucker, M. ; Lavieville, J. ; Morel, C.</creator><creatorcontrib>Mimouni, S. ; Archambeau, F. ; Boucker, M. ; Lavieville, J. ; Morel, C.</creatorcontrib><description>High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required.
In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation Eddy Viscosity Models (EVM), especially the standard
K–
ɛ model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional.
The simulation of swirling flow generated by the mixing vanes plays an important role for the prediction of the CHF for the fuel assemblies. For this reason, according to
Mimouni et al. (2008b, 2009b), rotation effects and RSTM model are more specifically addressed in the paper.
Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with simpler geometries, the DEBORA case and the ASU-annular channel case. ASU-annular channel case has already been addressed in
Mimouni et al. (2008b, 2009b).
Then, a geometry closer to actual fuel assemblies is considered. It consists of a rectangular test section in which a 2
×
2 rod bundle equipped with a simple spacer grid with mixing vanes is inserted. The influence of the turbulence model on target variables linked to CHF limitation will be discussed. Moreover, the sensitivity to the mesh refinement will be particularly examined. The study of this case is a further step towards the modelling of the two-phase boiling flow in real-life grids and rod bundles.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2009.11.020</identifier><identifier>CODEN: NEDEAU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Assembly ; Boiling ; Channels ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical analysis ; Mathematical models ; Nuclear fuels ; Spacers ; Vanes</subject><ispartof>Nuclear engineering and design, 2010-09, Vol.240 (9), p.2225-2232</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-ac7400fa11894cf9acbd98ac062fd508563fc1010069699a2c74cafbeff6bd613</citedby><cites>FETCH-LOGICAL-c378t-ac7400fa11894cf9acbd98ac062fd508563fc1010069699a2c74cafbeff6bd613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nucengdes.2009.11.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3541,23921,23922,25131,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23059034$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mimouni, S.</creatorcontrib><creatorcontrib>Archambeau, F.</creatorcontrib><creatorcontrib>Boucker, M.</creatorcontrib><creatorcontrib>Lavieville, J.</creatorcontrib><creatorcontrib>Morel, C.</creatorcontrib><title>A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis</title><title>Nuclear engineering and design</title><description>High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required.
In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation Eddy Viscosity Models (EVM), especially the standard
K–
ɛ model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional.
The simulation of swirling flow generated by the mixing vanes plays an important role for the prediction of the CHF for the fuel assemblies. For this reason, according to
Mimouni et al. (2008b, 2009b), rotation effects and RSTM model are more specifically addressed in the paper.
Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with simpler geometries, the DEBORA case and the ASU-annular channel case. ASU-annular channel case has already been addressed in
Mimouni et al. (2008b, 2009b).
Then, a geometry closer to actual fuel assemblies is considered. It consists of a rectangular test section in which a 2
×
2 rod bundle equipped with a simple spacer grid with mixing vanes is inserted. The influence of the turbulence model on target variables linked to CHF limitation will be discussed. Moreover, the sensitivity to the mesh refinement will be particularly examined. The study of this case is a further step towards the modelling of the two-phase boiling flow in real-life grids and rod bundles.</description><subject>Applied sciences</subject><subject>Assembly</subject><subject>Boiling</subject><subject>Channels</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nuclear fuels</subject><subject>Spacers</subject><subject>Vanes</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAURkVoodOkz1BtAt3YleyxbC2H0D8IFEIC3Ylr6SrRoLGmunbDvEEfuzITsq02Wuh83706jH2UopZCqs_7elosTo8OqW6E0LWUtWjEBdvIoW-qvtO_3rCNEI2uuq1u37H3RHuxHt1s2N8dJ7Rpcjxlh5nPSx6XiJNFfkgOIx-BsDxOHPgdnqYUHXGaMxJxOB5zAvvEfSrB51QdnwrMxxRimB65j-mZQ2kuXAwW5lBa5sT9UmqBCA9jPBUA4okCXbG3HiLhh5f7kj18_XJ_8726_fntx83utrJtP8wV2H4rhAcpB721XoMdnR7ACtV414mhU623xYsQSiutoSm8BT-i92p0SraX7NO5t-z-e0GazSGQxRhhwrSQkY1Sfae6blvQ_ozanIgyenPM4QD5ZKQwq3uzN6_uzereSGmK-5K8fhkCZCH6DJMN9BpvWtFp0a4TdmcOy4__BMyGbFjlu5DRzsal8N9Z_wAf3aHB</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Mimouni, S.</creator><creator>Archambeau, F.</creator><creator>Boucker, M.</creator><creator>Lavieville, J.</creator><creator>Morel, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100901</creationdate><title>A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis</title><author>Mimouni, S. ; Archambeau, F. ; Boucker, M. ; Lavieville, J. ; Morel, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-ac7400fa11894cf9acbd98ac062fd508563fc1010069699a2c74cafbeff6bd613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Assembly</topic><topic>Boiling</topic><topic>Channels</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nuclear fuels</topic><topic>Spacers</topic><topic>Vanes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mimouni, S.</creatorcontrib><creatorcontrib>Archambeau, F.</creatorcontrib><creatorcontrib>Boucker, M.</creatorcontrib><creatorcontrib>Lavieville, J.</creatorcontrib><creatorcontrib>Morel, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mimouni, S.</au><au>Archambeau, F.</au><au>Boucker, M.</au><au>Lavieville, J.</au><au>Morel, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis</atitle><jtitle>Nuclear engineering and design</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>240</volume><issue>9</issue><spage>2225</spage><epage>2232</epage><pages>2225-2232</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><coden>NEDEAU</coden><abstract>High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required.
In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation Eddy Viscosity Models (EVM), especially the standard
K–
ɛ model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional.
The simulation of swirling flow generated by the mixing vanes plays an important role for the prediction of the CHF for the fuel assemblies. For this reason, according to
Mimouni et al. (2008b, 2009b), rotation effects and RSTM model are more specifically addressed in the paper.
Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with simpler geometries, the DEBORA case and the ASU-annular channel case. ASU-annular channel case has already been addressed in
Mimouni et al. (2008b, 2009b).
Then, a geometry closer to actual fuel assemblies is considered. It consists of a rectangular test section in which a 2
×
2 rod bundle equipped with a simple spacer grid with mixing vanes is inserted. The influence of the turbulence model on target variables linked to CHF limitation will be discussed. Moreover, the sensitivity to the mesh refinement will be particularly examined. The study of this case is a further step towards the modelling of the two-phase boiling flow in real-life grids and rod bundles.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2009.11.020</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5493 |
ispartof | Nuclear engineering and design, 2010-09, Vol.240 (9), p.2225-2232 |
issn | 0029-5493 1872-759X |
language | eng |
recordid | cdi_proquest_miscellaneous_1266756554 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Assembly Boiling Channels Controled nuclear fusion plants Energy Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Fuels Installations for energy generation and conversion: thermal and electrical energy Mathematical analysis Mathematical models Nuclear fuels Spacers Vanes |
title | A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second%20order%20turbulence%20model%20based%20on%20a%20Reynolds%20stress%20approach%20for%20two-phase%20boiling%20flow%20and%20application%20to%20fuel%20assembly%20analysis&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Mimouni,%20S.&rft.date=2010-09-01&rft.volume=240&rft.issue=9&rft.spage=2225&rft.epage=2232&rft.pages=2225-2232&rft.issn=0029-5493&rft.eissn=1872-759X&rft.coden=NEDEAU&rft_id=info:doi/10.1016/j.nucengdes.2009.11.020&rft_dat=%3Cproquest_cross%3E1266756554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266756554&rft_id=info:pmid/&rft_els_id=S0029549309005792&rfr_iscdi=true |