A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis

High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2010-09, Vol.240 (9), p.2225-2232
Hauptverfasser: Mimouni, S., Archambeau, F., Boucker, M., Lavieville, J., Morel, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2232
container_issue 9
container_start_page 2225
container_title Nuclear engineering and design
container_volume 240
creator Mimouni, S.
Archambeau, F.
Boucker, M.
Lavieville, J.
Morel, C.
description High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required. In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation Eddy Viscosity Models (EVM), especially the standard K– ɛ model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional. The simulation of swirling flow generated by the mixing vanes plays an important role for the prediction of the CHF for the fuel assemblies. For this reason, according to Mimouni et al. (2008b, 2009b), rotation effects and RSTM model are more specifically addressed in the paper. Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with simpler geometries, the DEBORA case and the ASU-annular channel case. ASU-annular channel case has already been addressed in Mimouni et al. (2008b, 2009b). Then, a geometry closer to actual fuel assemblies is considered. It consists of a rectangular test section in which a 2 × 2 rod bundle equipped with a simple spacer grid with mixing vanes is inserted. The influence of the turbulence model on target variables linked to CHF limitation will be discussed. Moreover, the sensitivity to the mesh refinement will be particularly examined. The study of this case is a further step towards the modelling of the two-phase boiling flow in real-life grids and rod bundles.
doi_str_mv 10.1016/j.nucengdes.2009.11.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266756554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549309005792</els_id><sourcerecordid>1266756554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-ac7400fa11894cf9acbd98ac062fd508563fc1010069699a2c74cafbeff6bd613</originalsourceid><addsrcrecordid>eNqFkM1q3DAURkVoodOkz1BtAt3YleyxbC2H0D8IFEIC3Ylr6SrRoLGmunbDvEEfuzITsq02Wuh83706jH2UopZCqs_7elosTo8OqW6E0LWUtWjEBdvIoW-qvtO_3rCNEI2uuq1u37H3RHuxHt1s2N8dJ7Rpcjxlh5nPSx6XiJNFfkgOIx-BsDxOHPgdnqYUHXGaMxJxOB5zAvvEfSrB51QdnwrMxxRimB65j-mZQ2kuXAwW5lBa5sT9UmqBCA9jPBUA4okCXbG3HiLhh5f7kj18_XJ_8726_fntx83utrJtP8wV2H4rhAcpB721XoMdnR7ACtV414mhU623xYsQSiutoSm8BT-i92p0SraX7NO5t-z-e0GazSGQxRhhwrSQkY1Sfae6blvQ_ozanIgyenPM4QD5ZKQwq3uzN6_uzereSGmK-5K8fhkCZCH6DJMN9BpvWtFp0a4TdmcOy4__BMyGbFjlu5DRzsal8N9Z_wAf3aHB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266756554</pqid></control><display><type>article</type><title>A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mimouni, S. ; Archambeau, F. ; Boucker, M. ; Lavieville, J. ; Morel, C.</creator><creatorcontrib>Mimouni, S. ; Archambeau, F. ; Boucker, M. ; Lavieville, J. ; Morel, C.</creatorcontrib><description>High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required. In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation Eddy Viscosity Models (EVM), especially the standard K– ɛ model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional. The simulation of swirling flow generated by the mixing vanes plays an important role for the prediction of the CHF for the fuel assemblies. For this reason, according to Mimouni et al. (2008b, 2009b), rotation effects and RSTM model are more specifically addressed in the paper. Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with simpler geometries, the DEBORA case and the ASU-annular channel case. ASU-annular channel case has already been addressed in Mimouni et al. (2008b, 2009b). Then, a geometry closer to actual fuel assemblies is considered. It consists of a rectangular test section in which a 2 × 2 rod bundle equipped with a simple spacer grid with mixing vanes is inserted. The influence of the turbulence model on target variables linked to CHF limitation will be discussed. Moreover, the sensitivity to the mesh refinement will be particularly examined. The study of this case is a further step towards the modelling of the two-phase boiling flow in real-life grids and rod bundles.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2009.11.020</identifier><identifier>CODEN: NEDEAU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Assembly ; Boiling ; Channels ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical analysis ; Mathematical models ; Nuclear fuels ; Spacers ; Vanes</subject><ispartof>Nuclear engineering and design, 2010-09, Vol.240 (9), p.2225-2232</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-ac7400fa11894cf9acbd98ac062fd508563fc1010069699a2c74cafbeff6bd613</citedby><cites>FETCH-LOGICAL-c378t-ac7400fa11894cf9acbd98ac062fd508563fc1010069699a2c74cafbeff6bd613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nucengdes.2009.11.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3541,23921,23922,25131,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23059034$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mimouni, S.</creatorcontrib><creatorcontrib>Archambeau, F.</creatorcontrib><creatorcontrib>Boucker, M.</creatorcontrib><creatorcontrib>Lavieville, J.</creatorcontrib><creatorcontrib>Morel, C.</creatorcontrib><title>A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis</title><title>Nuclear engineering and design</title><description>High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required. In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation Eddy Viscosity Models (EVM), especially the standard K– ɛ model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional. The simulation of swirling flow generated by the mixing vanes plays an important role for the prediction of the CHF for the fuel assemblies. For this reason, according to Mimouni et al. (2008b, 2009b), rotation effects and RSTM model are more specifically addressed in the paper. Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with simpler geometries, the DEBORA case and the ASU-annular channel case. ASU-annular channel case has already been addressed in Mimouni et al. (2008b, 2009b). Then, a geometry closer to actual fuel assemblies is considered. It consists of a rectangular test section in which a 2 × 2 rod bundle equipped with a simple spacer grid with mixing vanes is inserted. The influence of the turbulence model on target variables linked to CHF limitation will be discussed. Moreover, the sensitivity to the mesh refinement will be particularly examined. The study of this case is a further step towards the modelling of the two-phase boiling flow in real-life grids and rod bundles.</description><subject>Applied sciences</subject><subject>Assembly</subject><subject>Boiling</subject><subject>Channels</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nuclear fuels</subject><subject>Spacers</subject><subject>Vanes</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAURkVoodOkz1BtAt3YleyxbC2H0D8IFEIC3Ylr6SrRoLGmunbDvEEfuzITsq02Wuh83706jH2UopZCqs_7elosTo8OqW6E0LWUtWjEBdvIoW-qvtO_3rCNEI2uuq1u37H3RHuxHt1s2N8dJ7Rpcjxlh5nPSx6XiJNFfkgOIx-BsDxOHPgdnqYUHXGaMxJxOB5zAvvEfSrB51QdnwrMxxRimB65j-mZQ2kuXAwW5lBa5sT9UmqBCA9jPBUA4okCXbG3HiLhh5f7kj18_XJ_8726_fntx83utrJtP8wV2H4rhAcpB721XoMdnR7ACtV414mhU623xYsQSiutoSm8BT-i92p0SraX7NO5t-z-e0GazSGQxRhhwrSQkY1Sfae6blvQ_ozanIgyenPM4QD5ZKQwq3uzN6_uzereSGmK-5K8fhkCZCH6DJMN9BpvWtFp0a4TdmcOy4__BMyGbFjlu5DRzsal8N9Z_wAf3aHB</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Mimouni, S.</creator><creator>Archambeau, F.</creator><creator>Boucker, M.</creator><creator>Lavieville, J.</creator><creator>Morel, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100901</creationdate><title>A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis</title><author>Mimouni, S. ; Archambeau, F. ; Boucker, M. ; Lavieville, J. ; Morel, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-ac7400fa11894cf9acbd98ac062fd508563fc1010069699a2c74cafbeff6bd613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Assembly</topic><topic>Boiling</topic><topic>Channels</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nuclear fuels</topic><topic>Spacers</topic><topic>Vanes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mimouni, S.</creatorcontrib><creatorcontrib>Archambeau, F.</creatorcontrib><creatorcontrib>Boucker, M.</creatorcontrib><creatorcontrib>Lavieville, J.</creatorcontrib><creatorcontrib>Morel, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mimouni, S.</au><au>Archambeau, F.</au><au>Boucker, M.</au><au>Lavieville, J.</au><au>Morel, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis</atitle><jtitle>Nuclear engineering and design</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>240</volume><issue>9</issue><spage>2225</spage><epage>2232</epage><pages>2225-2232</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><coden>NEDEAU</coden><abstract>High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required. In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation Eddy Viscosity Models (EVM), especially the standard K– ɛ model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional. The simulation of swirling flow generated by the mixing vanes plays an important role for the prediction of the CHF for the fuel assemblies. For this reason, according to Mimouni et al. (2008b, 2009b), rotation effects and RSTM model are more specifically addressed in the paper. Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with simpler geometries, the DEBORA case and the ASU-annular channel case. ASU-annular channel case has already been addressed in Mimouni et al. (2008b, 2009b). Then, a geometry closer to actual fuel assemblies is considered. It consists of a rectangular test section in which a 2 × 2 rod bundle equipped with a simple spacer grid with mixing vanes is inserted. The influence of the turbulence model on target variables linked to CHF limitation will be discussed. Moreover, the sensitivity to the mesh refinement will be particularly examined. The study of this case is a further step towards the modelling of the two-phase boiling flow in real-life grids and rod bundles.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2009.11.020</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2010-09, Vol.240 (9), p.2225-2232
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_miscellaneous_1266756554
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Assembly
Boiling
Channels
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Mathematical analysis
Mathematical models
Nuclear fuels
Spacers
Vanes
title A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second%20order%20turbulence%20model%20based%20on%20a%20Reynolds%20stress%20approach%20for%20two-phase%20boiling%20flow%20and%20application%20to%20fuel%20assembly%20analysis&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Mimouni,%20S.&rft.date=2010-09-01&rft.volume=240&rft.issue=9&rft.spage=2225&rft.epage=2232&rft.pages=2225-2232&rft.issn=0029-5493&rft.eissn=1872-759X&rft.coden=NEDEAU&rft_id=info:doi/10.1016/j.nucengdes.2009.11.020&rft_dat=%3Cproquest_cross%3E1266756554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266756554&rft_id=info:pmid/&rft_els_id=S0029549309005792&rfr_iscdi=true