Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method
A spectral element method (SEM) is introduced for the vibration analysis of rectangular plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often called the dynamic stiffness matrix) is formulated from the relation between the forces and displacement along the o...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical science and technology 1998-07, Vol.12 (4), p.565-571 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 4 |
container_start_page | 565 |
container_title | Journal of mechanical science and technology |
container_volume | 12 |
creator | Lee, Usik Lee, Joonkeun |
description | A spectral element method (SEM) is introduced for the vibration analysis of rectangular plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often called the dynamic stiffness matrix) is formulated from the relation between the forces and displacement along the opposite two parallel edges. The distributed dynamic load is discretized into a sequence of equivalent line loads. The plate is then considered as a connection of two spectral plate element with the joint node line along which the equivalent line load acts. The spatial coordinate dependence of each equivalent line load is then removed through the spatial Fourier transformation so that the plate (2-D) problem becomes a simplified equivalent beam like (1-D) problem. The remaining solution procedures is therefore the same as that used for beam problems. Numerical tests show that the present SEM provides very accurate solutions when compared to finite element solutions. |
doi_str_mv | 10.1007/bf02945717 |
format | Article |
fullrecord | <record><control><sourceid>nurimedia_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266752618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nurid>NODE00336092</nurid><sourcerecordid>NODE00336092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-5a2e134e232914dbabfc2b56b3d4c98486e01bd92b988b18a9037aabe05a2fb83</originalsourceid><addsrcrecordid>eNp90U1r3DAQBmBTEmiy6aW_QBAKoeBEGtmWdEz3Iwlsu4Xt9moke9xo8VobST7sv6-WTXvIIaeZwzPDMG-WfWb0llEq7kxHQRWlYOJDdsGUqHIuoThLPUCVF7IqP2aXIWwpLRVwdpF1v63xOlo3kPtB94dgA3Edic9IfvY6YiDr0WyxiSQ6MrMhemvGiC2ZHQa9sw1ZOt0GYg5kE-zwh6z3yXrdk3mPOxwi-Y7x2bVX2Xmn-4CfXusk2yzmv6aP-XL18DS9X-YNL2TMSw3IeIHAQbGiNdp0DZiyMrwtGiXT_UiZaRUYJaVhUivKhdYGaZrsjOST7Oa0d-_dy4gh1jsbGux7PaAbQ82gqkQJFTvS6zd060affhBqEFJAIalQ7ylGgSoKjENSX0-q8S4Ej12993an_SGh-hhM_W3xL5iEv5zwMCaErdX_9Y_VbE4p5xVN6fwFvx-K6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020902132</pqid></control><display><type>article</type><title>Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method</title><source>SpringerLink Journals</source><creator>Lee, Usik ; Lee, Joonkeun</creator><creatorcontrib>Lee, Usik ; Lee, Joonkeun</creatorcontrib><description>A spectral element method (SEM) is introduced for the vibration analysis of rectangular plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often called the dynamic stiffness matrix) is formulated from the relation between the forces and displacement along the opposite two parallel edges. The distributed dynamic load is discretized into a sequence of equivalent line loads. The plate is then considered as a connection of two spectral plate element with the joint node line along which the equivalent line load acts. The spatial coordinate dependence of each equivalent line load is then removed through the spatial Fourier transformation so that the plate (2-D) problem becomes a simplified equivalent beam like (1-D) problem. The remaining solution procedures is therefore the same as that used for beam problems. Numerical tests show that the present SEM provides very accurate solutions when compared to finite element solutions.</description><identifier>ISSN: 1226-4865</identifier><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/bf02945717</identifier><language>eng</language><publisher>Seoul: 대한기계학회</publisher><subject>Dynamic loads ; Equivalence ; Finite element analysis ; Fourier transforms ; Load ; Loads (forces) ; Mathematical models ; Plates ; Rectangular plates ; Scanning electron microscopy ; Spectral element method ; Stiffness matrix ; Studies ; Vibration analysis</subject><ispartof>Journal of mechanical science and technology, 1998-07, Vol.12 (4), p.565-571</ispartof><rights>The Korean Society of Mechanical Engineers (KSME) 1998</rights><rights>The Korean Society of Mechanical Engineers (KSME) 1998.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-5a2e134e232914dbabfc2b56b3d4c98486e01bd92b988b18a9037aabe05a2fb83</citedby><cites>FETCH-LOGICAL-c348t-5a2e134e232914dbabfc2b56b3d4c98486e01bd92b988b18a9037aabe05a2fb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Usik</creatorcontrib><creatorcontrib>Lee, Joonkeun</creatorcontrib><title>Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method</title><title>Journal of mechanical science and technology</title><description>A spectral element method (SEM) is introduced for the vibration analysis of rectangular plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often called the dynamic stiffness matrix) is formulated from the relation between the forces and displacement along the opposite two parallel edges. The distributed dynamic load is discretized into a sequence of equivalent line loads. The plate is then considered as a connection of two spectral plate element with the joint node line along which the equivalent line load acts. The spatial coordinate dependence of each equivalent line load is then removed through the spatial Fourier transformation so that the plate (2-D) problem becomes a simplified equivalent beam like (1-D) problem. The remaining solution procedures is therefore the same as that used for beam problems. Numerical tests show that the present SEM provides very accurate solutions when compared to finite element solutions.</description><subject>Dynamic loads</subject><subject>Equivalence</subject><subject>Finite element analysis</subject><subject>Fourier transforms</subject><subject>Load</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>Plates</subject><subject>Rectangular plates</subject><subject>Scanning electron microscopy</subject><subject>Spectral element method</subject><subject>Stiffness matrix</subject><subject>Studies</subject><subject>Vibration analysis</subject><issn>1226-4865</issn><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp90U1r3DAQBmBTEmiy6aW_QBAKoeBEGtmWdEz3Iwlsu4Xt9moke9xo8VobST7sv6-WTXvIIaeZwzPDMG-WfWb0llEq7kxHQRWlYOJDdsGUqHIuoThLPUCVF7IqP2aXIWwpLRVwdpF1v63xOlo3kPtB94dgA3Edic9IfvY6YiDr0WyxiSQ6MrMhemvGiC2ZHQa9sw1ZOt0GYg5kE-zwh6z3yXrdk3mPOxwi-Y7x2bVX2Xmn-4CfXusk2yzmv6aP-XL18DS9X-YNL2TMSw3IeIHAQbGiNdp0DZiyMrwtGiXT_UiZaRUYJaVhUivKhdYGaZrsjOST7Oa0d-_dy4gh1jsbGux7PaAbQ82gqkQJFTvS6zd060affhBqEFJAIalQ7ylGgSoKjENSX0-q8S4Ej12993an_SGh-hhM_W3xL5iEv5zwMCaErdX_9Y_VbE4p5xVN6fwFvx-K6A</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Lee, Usik</creator><creator>Lee, Joonkeun</creator><general>대한기계학회</general><general>Springer Nature B.V</general><scope>DBRKI</scope><scope>TDB</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>19980701</creationdate><title>Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method</title><author>Lee, Usik ; Lee, Joonkeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-5a2e134e232914dbabfc2b56b3d4c98486e01bd92b988b18a9037aabe05a2fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Dynamic loads</topic><topic>Equivalence</topic><topic>Finite element analysis</topic><topic>Fourier transforms</topic><topic>Load</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>Plates</topic><topic>Rectangular plates</topic><topic>Scanning electron microscopy</topic><topic>Spectral element method</topic><topic>Stiffness matrix</topic><topic>Studies</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Usik</creatorcontrib><creatorcontrib>Lee, Joonkeun</creatorcontrib><collection>DBPIA - 디비피아</collection><collection>Nurimedia DBPIA Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Usik</au><au>Lee, Joonkeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method</atitle><jtitle>Journal of mechanical science and technology</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>12</volume><issue>4</issue><spage>565</spage><epage>571</epage><pages>565-571</pages><issn>1226-4865</issn><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>A spectral element method (SEM) is introduced for the vibration analysis of rectangular plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often called the dynamic stiffness matrix) is formulated from the relation between the forces and displacement along the opposite two parallel edges. The distributed dynamic load is discretized into a sequence of equivalent line loads. The plate is then considered as a connection of two spectral plate element with the joint node line along which the equivalent line load acts. The spatial coordinate dependence of each equivalent line load is then removed through the spatial Fourier transformation so that the plate (2-D) problem becomes a simplified equivalent beam like (1-D) problem. The remaining solution procedures is therefore the same as that used for beam problems. Numerical tests show that the present SEM provides very accurate solutions when compared to finite element solutions.</abstract><cop>Seoul</cop><pub>대한기계학회</pub><doi>10.1007/bf02945717</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1226-4865 |
ispartof | Journal of mechanical science and technology, 1998-07, Vol.12 (4), p.565-571 |
issn | 1226-4865 1738-494X 1976-3824 |
language | eng |
recordid | cdi_proquest_miscellaneous_1266752618 |
source | SpringerLink Journals |
subjects | Dynamic loads Equivalence Finite element analysis Fourier transforms Load Loads (forces) Mathematical models Plates Rectangular plates Scanning electron microscopy Spectral element method Stiffness matrix Studies Vibration analysis |
title | Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nurimedia_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20Analysis%20of%20the%20Plates%20Subject%20to%20Distributed%20Dynamic%20Loads%20by%20Using%20Spectral%20Element%20Method&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Lee,%20Usik&rft.date=1998-07-01&rft.volume=12&rft.issue=4&rft.spage=565&rft.epage=571&rft.pages=565-571&rft.issn=1226-4865&rft.eissn=1976-3824&rft_id=info:doi/10.1007/bf02945717&rft_dat=%3Cnurimedia_proqu%3ENODE00336092%3C/nurimedia_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020902132&rft_id=info:pmid/&rft_nurid=NODE00336092&rfr_iscdi=true |