Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method

A spectral element method (SEM) is introduced for the vibration analysis of rectangular plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often called the dynamic stiffness matrix) is formulated from the relation between the forces and displacement along the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 1998-07, Vol.12 (4), p.565-571
Hauptverfasser: Lee, Usik, Lee, Joonkeun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue 4
container_start_page 565
container_title Journal of mechanical science and technology
container_volume 12
creator Lee, Usik
Lee, Joonkeun
description A spectral element method (SEM) is introduced for the vibration analysis of rectangular plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often called the dynamic stiffness matrix) is formulated from the relation between the forces and displacement along the opposite two parallel edges. The distributed dynamic load is discretized into a sequence of equivalent line loads. The plate is then considered as a connection of two spectral plate element with the joint node line along which the equivalent line load acts. The spatial coordinate dependence of each equivalent line load is then removed through the spatial Fourier transformation so that the plate (2-D) problem becomes a simplified equivalent beam like (1-D) problem. The remaining solution procedures is therefore the same as that used for beam problems. Numerical tests show that the present SEM provides very accurate solutions when compared to finite element solutions.
doi_str_mv 10.1007/bf02945717
format Article
fullrecord <record><control><sourceid>nurimedia_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266752618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nurid>NODE00336092</nurid><sourcerecordid>NODE00336092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-5a2e134e232914dbabfc2b56b3d4c98486e01bd92b988b18a9037aabe05a2fb83</originalsourceid><addsrcrecordid>eNp90U1r3DAQBmBTEmiy6aW_QBAKoeBEGtmWdEz3Iwlsu4Xt9moke9xo8VobST7sv6-WTXvIIaeZwzPDMG-WfWb0llEq7kxHQRWlYOJDdsGUqHIuoThLPUCVF7IqP2aXIWwpLRVwdpF1v63xOlo3kPtB94dgA3Edic9IfvY6YiDr0WyxiSQ6MrMhemvGiC2ZHQa9sw1ZOt0GYg5kE-zwh6z3yXrdk3mPOxwi-Y7x2bVX2Xmn-4CfXusk2yzmv6aP-XL18DS9X-YNL2TMSw3IeIHAQbGiNdp0DZiyMrwtGiXT_UiZaRUYJaVhUivKhdYGaZrsjOST7Oa0d-_dy4gh1jsbGux7PaAbQ82gqkQJFTvS6zd060affhBqEFJAIalQ7ylGgSoKjENSX0-q8S4Ej12993an_SGh-hhM_W3xL5iEv5zwMCaErdX_9Y_VbE4p5xVN6fwFvx-K6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020902132</pqid></control><display><type>article</type><title>Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method</title><source>SpringerLink Journals</source><creator>Lee, Usik ; Lee, Joonkeun</creator><creatorcontrib>Lee, Usik ; Lee, Joonkeun</creatorcontrib><description>A spectral element method (SEM) is introduced for the vibration analysis of rectangular plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often called the dynamic stiffness matrix) is formulated from the relation between the forces and displacement along the opposite two parallel edges. The distributed dynamic load is discretized into a sequence of equivalent line loads. The plate is then considered as a connection of two spectral plate element with the joint node line along which the equivalent line load acts. The spatial coordinate dependence of each equivalent line load is then removed through the spatial Fourier transformation so that the plate (2-D) problem becomes a simplified equivalent beam like (1-D) problem. The remaining solution procedures is therefore the same as that used for beam problems. Numerical tests show that the present SEM provides very accurate solutions when compared to finite element solutions.</description><identifier>ISSN: 1226-4865</identifier><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/bf02945717</identifier><language>eng</language><publisher>Seoul: 대한기계학회</publisher><subject>Dynamic loads ; Equivalence ; Finite element analysis ; Fourier transforms ; Load ; Loads (forces) ; Mathematical models ; Plates ; Rectangular plates ; Scanning electron microscopy ; Spectral element method ; Stiffness matrix ; Studies ; Vibration analysis</subject><ispartof>Journal of mechanical science and technology, 1998-07, Vol.12 (4), p.565-571</ispartof><rights>The Korean Society of Mechanical Engineers (KSME) 1998</rights><rights>The Korean Society of Mechanical Engineers (KSME) 1998.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-5a2e134e232914dbabfc2b56b3d4c98486e01bd92b988b18a9037aabe05a2fb83</citedby><cites>FETCH-LOGICAL-c348t-5a2e134e232914dbabfc2b56b3d4c98486e01bd92b988b18a9037aabe05a2fb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Usik</creatorcontrib><creatorcontrib>Lee, Joonkeun</creatorcontrib><title>Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method</title><title>Journal of mechanical science and technology</title><description>A spectral element method (SEM) is introduced for the vibration analysis of rectangular plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often called the dynamic stiffness matrix) is formulated from the relation between the forces and displacement along the opposite two parallel edges. The distributed dynamic load is discretized into a sequence of equivalent line loads. The plate is then considered as a connection of two spectral plate element with the joint node line along which the equivalent line load acts. The spatial coordinate dependence of each equivalent line load is then removed through the spatial Fourier transformation so that the plate (2-D) problem becomes a simplified equivalent beam like (1-D) problem. The remaining solution procedures is therefore the same as that used for beam problems. Numerical tests show that the present SEM provides very accurate solutions when compared to finite element solutions.</description><subject>Dynamic loads</subject><subject>Equivalence</subject><subject>Finite element analysis</subject><subject>Fourier transforms</subject><subject>Load</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>Plates</subject><subject>Rectangular plates</subject><subject>Scanning electron microscopy</subject><subject>Spectral element method</subject><subject>Stiffness matrix</subject><subject>Studies</subject><subject>Vibration analysis</subject><issn>1226-4865</issn><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp90U1r3DAQBmBTEmiy6aW_QBAKoeBEGtmWdEz3Iwlsu4Xt9moke9xo8VobST7sv6-WTXvIIaeZwzPDMG-WfWb0llEq7kxHQRWlYOJDdsGUqHIuoThLPUCVF7IqP2aXIWwpLRVwdpF1v63xOlo3kPtB94dgA3Edic9IfvY6YiDr0WyxiSQ6MrMhemvGiC2ZHQa9sw1ZOt0GYg5kE-zwh6z3yXrdk3mPOxwi-Y7x2bVX2Xmn-4CfXusk2yzmv6aP-XL18DS9X-YNL2TMSw3IeIHAQbGiNdp0DZiyMrwtGiXT_UiZaRUYJaVhUivKhdYGaZrsjOST7Oa0d-_dy4gh1jsbGux7PaAbQ82gqkQJFTvS6zd060affhBqEFJAIalQ7ylGgSoKjENSX0-q8S4Ej12993an_SGh-hhM_W3xL5iEv5zwMCaErdX_9Y_VbE4p5xVN6fwFvx-K6A</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Lee, Usik</creator><creator>Lee, Joonkeun</creator><general>대한기계학회</general><general>Springer Nature B.V</general><scope>DBRKI</scope><scope>TDB</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>19980701</creationdate><title>Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method</title><author>Lee, Usik ; Lee, Joonkeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-5a2e134e232914dbabfc2b56b3d4c98486e01bd92b988b18a9037aabe05a2fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Dynamic loads</topic><topic>Equivalence</topic><topic>Finite element analysis</topic><topic>Fourier transforms</topic><topic>Load</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>Plates</topic><topic>Rectangular plates</topic><topic>Scanning electron microscopy</topic><topic>Spectral element method</topic><topic>Stiffness matrix</topic><topic>Studies</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Usik</creatorcontrib><creatorcontrib>Lee, Joonkeun</creatorcontrib><collection>DBPIA - 디비피아</collection><collection>Nurimedia DBPIA Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Usik</au><au>Lee, Joonkeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method</atitle><jtitle>Journal of mechanical science and technology</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>12</volume><issue>4</issue><spage>565</spage><epage>571</epage><pages>565-571</pages><issn>1226-4865</issn><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>A spectral element method (SEM) is introduced for the vibration analysis of rectangular plates under distributed dynamic loads. In this paper, the spectral plate element matrix (often called the dynamic stiffness matrix) is formulated from the relation between the forces and displacement along the opposite two parallel edges. The distributed dynamic load is discretized into a sequence of equivalent line loads. The plate is then considered as a connection of two spectral plate element with the joint node line along which the equivalent line load acts. The spatial coordinate dependence of each equivalent line load is then removed through the spatial Fourier transformation so that the plate (2-D) problem becomes a simplified equivalent beam like (1-D) problem. The remaining solution procedures is therefore the same as that used for beam problems. Numerical tests show that the present SEM provides very accurate solutions when compared to finite element solutions.</abstract><cop>Seoul</cop><pub>대한기계학회</pub><doi>10.1007/bf02945717</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1226-4865
ispartof Journal of mechanical science and technology, 1998-07, Vol.12 (4), p.565-571
issn 1226-4865
1738-494X
1976-3824
language eng
recordid cdi_proquest_miscellaneous_1266752618
source SpringerLink Journals
subjects Dynamic loads
Equivalence
Finite element analysis
Fourier transforms
Load
Loads (forces)
Mathematical models
Plates
Rectangular plates
Scanning electron microscopy
Spectral element method
Stiffness matrix
Studies
Vibration analysis
title Vibration Analysis of the Plates Subject to Distributed Dynamic Loads by Using Spectral Element Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nurimedia_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20Analysis%20of%20the%20Plates%20Subject%20to%20Distributed%20Dynamic%20Loads%20by%20Using%20Spectral%20Element%20Method&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Lee,%20Usik&rft.date=1998-07-01&rft.volume=12&rft.issue=4&rft.spage=565&rft.epage=571&rft.pages=565-571&rft.issn=1226-4865&rft.eissn=1976-3824&rft_id=info:doi/10.1007/bf02945717&rft_dat=%3Cnurimedia_proqu%3ENODE00336092%3C/nurimedia_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020902132&rft_id=info:pmid/&rft_nurid=NODE00336092&rfr_iscdi=true