Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times
The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer...
Gespeichert in:
Veröffentlicht in: | Macromolecular theory and simulations 2000-08, Vol.9 (7), p.407-415 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | 7 |
container_start_page | 407 |
container_title | Macromolecular theory and simulations |
container_volume | 9 |
creator | Gotlib, Yuli Ya Gurtovenko, Andrew A. |
description | The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer network consisting of “bead and spring” Rouse chains and the simplified coarse‐grained network model describing only the large‐scale collective relaxation of a network are studied. For both dynamic network models the set of relaxation times and the transformation from Cartesian coordinates of network elements to normal modes are obtained. Using the normal mode transformation obtained, in Part 2 of this series the exact analytical expressions for various local dynamic characteristics of the polymer network having a two‐dimensional connectivity will be calculated. |
doi_str_mv | 10.1002/1521-3919(20000801)9:7<407::AID-MATS407>3.0.CO;2-B |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266741655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266741655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3787-a398d9fb53d7874e6afaec28df07d717faa25ea26cc083c55ce4aec60da82d3b3</originalsourceid><addsrcrecordid>eNqVkFtP20AQRi0EUrn0P_gRpG66F9trh6pSSMu9iVQCSLyMFu9YdbG96a5Rkn_PRAHUh750X3Znv5kjzYmioeADwbn8LFIpmCpEcSg5nZyLo2KovyRcD4eji2_sx2h2Q8VXNeCD8fRYspOtaPd9aJveXEomVJJ8iPZC-E2MotByN6pnv9D5Veyq2GNjlqavXRfPvZuj72sM66BfOGbrFrtAmWniuWtWLfq4Q0r8U_gUi0E8cb6lrHWWhkxn_8b1NBwOop3KNAE_vt770e3p99n4nF1Pzy7Go2tWKp1rZlSR26J6TJWlMsHMVAZLmduKa6uFroyRKRqZlSXPVZmmJSbUkHFrcmnVo9qPDjdcWuLPM4Ye2jqU2DSmQ_ccQMgs04nI0pRaf25aS-9C8FjB3Net8SsQHNbeYa0Q1grhzTsUoIFUA5B3ePUOCjiMpyDhhKB3G-iibnD1P8R_A9--CMw24Dr0uHwHG_8EmVY6hfvJGZw_qKubyeQS7tQLbVel4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266741655</pqid></control><display><type>article</type><title>Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gotlib, Yuli Ya ; Gurtovenko, Andrew A.</creator><creatorcontrib>Gotlib, Yuli Ya ; Gurtovenko, Andrew A.</creatorcontrib><description>The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer network consisting of “bead and spring” Rouse chains and the simplified coarse‐grained network model describing only the large‐scale collective relaxation of a network are studied. For both dynamic network models the set of relaxation times and the transformation from Cartesian coordinates of network elements to normal modes are obtained. Using the normal mode transformation obtained, in Part 2 of this series the exact analytical expressions for various local dynamic characteristics of the polymer network having a two‐dimensional connectivity will be calculated.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/1521-3919(20000801)9:7<407::AID-MATS407>3.0.CO;2-B</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag GmbH</publisher><subject>Beads ; Mathematical analysis ; Mathematical models ; Networks ; Relaxation time ; Springs ; Transformations ; Two dimensional</subject><ispartof>Macromolecular theory and simulations, 2000-08, Vol.9 (7), p.407-415</ispartof><rights>2000 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1521-3919%2820000801%299%3A7%3C407%3A%3AAID-MATS407%3E3.0.CO%3B2-B$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1521-3919%2820000801%299%3A7%3C407%3A%3AAID-MATS407%3E3.0.CO%3B2-B$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gotlib, Yuli Ya</creatorcontrib><creatorcontrib>Gurtovenko, Andrew A.</creatorcontrib><title>Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times</title><title>Macromolecular theory and simulations</title><addtitle>Macromol. Theory Simul</addtitle><description>The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer network consisting of “bead and spring” Rouse chains and the simplified coarse‐grained network model describing only the large‐scale collective relaxation of a network are studied. For both dynamic network models the set of relaxation times and the transformation from Cartesian coordinates of network elements to normal modes are obtained. Using the normal mode transformation obtained, in Part 2 of this series the exact analytical expressions for various local dynamic characteristics of the polymer network having a two‐dimensional connectivity will be calculated.</description><subject>Beads</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Relaxation time</subject><subject>Springs</subject><subject>Transformations</subject><subject>Two dimensional</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkFtP20AQRi0EUrn0P_gRpG66F9trh6pSSMu9iVQCSLyMFu9YdbG96a5Rkn_PRAHUh750X3Znv5kjzYmioeADwbn8LFIpmCpEcSg5nZyLo2KovyRcD4eji2_sx2h2Q8VXNeCD8fRYspOtaPd9aJveXEomVJJ8iPZC-E2MotByN6pnv9D5Veyq2GNjlqavXRfPvZuj72sM66BfOGbrFrtAmWniuWtWLfq4Q0r8U_gUi0E8cb6lrHWWhkxn_8b1NBwOop3KNAE_vt770e3p99n4nF1Pzy7Go2tWKp1rZlSR26J6TJWlMsHMVAZLmduKa6uFroyRKRqZlSXPVZmmJSbUkHFrcmnVo9qPDjdcWuLPM4Ye2jqU2DSmQ_ccQMgs04nI0pRaf25aS-9C8FjB3Net8SsQHNbeYa0Q1grhzTsUoIFUA5B3ePUOCjiMpyDhhKB3G-iibnD1P8R_A9--CMw24Dr0uHwHG_8EmVY6hfvJGZw_qKubyeQS7tQLbVel4w</recordid><startdate>200008</startdate><enddate>200008</enddate><creator>Gotlib, Yuli Ya</creator><creator>Gurtovenko, Andrew A.</creator><general>WILEY-VCH Verlag GmbH</general><general>WILEY‐VCH Verlag GmbH</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200008</creationdate><title>Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times</title><author>Gotlib, Yuli Ya ; Gurtovenko, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3787-a398d9fb53d7874e6afaec28df07d717faa25ea26cc083c55ce4aec60da82d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Beads</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Relaxation time</topic><topic>Springs</topic><topic>Transformations</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gotlib, Yuli Ya</creatorcontrib><creatorcontrib>Gurtovenko, Andrew A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gotlib, Yuli Ya</au><au>Gurtovenko, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times</atitle><jtitle>Macromolecular theory and simulations</jtitle><addtitle>Macromol. Theory Simul</addtitle><date>2000-08</date><risdate>2000</risdate><volume>9</volume><issue>7</issue><spage>407</spage><epage>415</epage><pages>407-415</pages><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer network consisting of “bead and spring” Rouse chains and the simplified coarse‐grained network model describing only the large‐scale collective relaxation of a network are studied. For both dynamic network models the set of relaxation times and the transformation from Cartesian coordinates of network elements to normal modes are obtained. Using the normal mode transformation obtained, in Part 2 of this series the exact analytical expressions for various local dynamic characteristics of the polymer network having a two‐dimensional connectivity will be calculated.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag GmbH</pub><doi>10.1002/1521-3919(20000801)9:7<407::AID-MATS407>3.0.CO;2-B</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1344 |
ispartof | Macromolecular theory and simulations, 2000-08, Vol.9 (7), p.407-415 |
issn | 1022-1344 1521-3919 |
language | eng |
recordid | cdi_proquest_miscellaneous_1266741655 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Beads Mathematical analysis Mathematical models Networks Relaxation time Springs Transformations Two dimensional |
title | Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20relaxation%20properties%20of%20two-dimensional%20polymer%20networks,%201.%20Normal%20modes%20and%20relaxation%20times&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Gotlib,%20Yuli%20Ya&rft.date=2000-08&rft.volume=9&rft.issue=7&rft.spage=407&rft.epage=415&rft.pages=407-415&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/1521-3919(20000801)9:7%3C407::AID-MATS407%3E3.0.CO;2-B&rft_dat=%3Cproquest_cross%3E1266741655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266741655&rft_id=info:pmid/&rfr_iscdi=true |