Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times

The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular theory and simulations 2000-08, Vol.9 (7), p.407-415
Hauptverfasser: Gotlib, Yuli Ya, Gurtovenko, Andrew A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue 7
container_start_page 407
container_title Macromolecular theory and simulations
container_volume 9
creator Gotlib, Yuli Ya
Gurtovenko, Andrew A.
description The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer network consisting of “bead and spring” Rouse chains and the simplified coarse‐grained network model describing only the large‐scale collective relaxation of a network are studied. For both dynamic network models the set of relaxation times and the transformation from Cartesian coordinates of network elements to normal modes are obtained. Using the normal mode transformation obtained, in Part 2 of this series the exact analytical expressions for various local dynamic characteristics of the polymer network having a two‐dimensional connectivity will be calculated.
doi_str_mv 10.1002/1521-3919(20000801)9:7<407::AID-MATS407>3.0.CO;2-B
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266741655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266741655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3787-a398d9fb53d7874e6afaec28df07d717faa25ea26cc083c55ce4aec60da82d3b3</originalsourceid><addsrcrecordid>eNqVkFtP20AQRi0EUrn0P_gRpG66F9trh6pSSMu9iVQCSLyMFu9YdbG96a5Rkn_PRAHUh750X3Znv5kjzYmioeADwbn8LFIpmCpEcSg5nZyLo2KovyRcD4eji2_sx2h2Q8VXNeCD8fRYspOtaPd9aJveXEomVJJ8iPZC-E2MotByN6pnv9D5Veyq2GNjlqavXRfPvZuj72sM66BfOGbrFrtAmWniuWtWLfq4Q0r8U_gUi0E8cb6lrHWWhkxn_8b1NBwOop3KNAE_vt770e3p99n4nF1Pzy7Go2tWKp1rZlSR26J6TJWlMsHMVAZLmduKa6uFroyRKRqZlSXPVZmmJSbUkHFrcmnVo9qPDjdcWuLPM4Ye2jqU2DSmQ_ccQMgs04nI0pRaf25aS-9C8FjB3Net8SsQHNbeYa0Q1grhzTsUoIFUA5B3ePUOCjiMpyDhhKB3G-iibnD1P8R_A9--CMw24Dr0uHwHG_8EmVY6hfvJGZw_qKubyeQS7tQLbVel4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266741655</pqid></control><display><type>article</type><title>Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gotlib, Yuli Ya ; Gurtovenko, Andrew A.</creator><creatorcontrib>Gotlib, Yuli Ya ; Gurtovenko, Andrew A.</creatorcontrib><description>The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer network consisting of “bead and spring” Rouse chains and the simplified coarse‐grained network model describing only the large‐scale collective relaxation of a network are studied. For both dynamic network models the set of relaxation times and the transformation from Cartesian coordinates of network elements to normal modes are obtained. Using the normal mode transformation obtained, in Part 2 of this series the exact analytical expressions for various local dynamic characteristics of the polymer network having a two‐dimensional connectivity will be calculated.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/1521-3919(20000801)9:7&lt;407::AID-MATS407&gt;3.0.CO;2-B</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag GmbH</publisher><subject>Beads ; Mathematical analysis ; Mathematical models ; Networks ; Relaxation time ; Springs ; Transformations ; Two dimensional</subject><ispartof>Macromolecular theory and simulations, 2000-08, Vol.9 (7), p.407-415</ispartof><rights>2000 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1521-3919%2820000801%299%3A7%3C407%3A%3AAID-MATS407%3E3.0.CO%3B2-B$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1521-3919%2820000801%299%3A7%3C407%3A%3AAID-MATS407%3E3.0.CO%3B2-B$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gotlib, Yuli Ya</creatorcontrib><creatorcontrib>Gurtovenko, Andrew A.</creatorcontrib><title>Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times</title><title>Macromolecular theory and simulations</title><addtitle>Macromol. Theory Simul</addtitle><description>The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer network consisting of “bead and spring” Rouse chains and the simplified coarse‐grained network model describing only the large‐scale collective relaxation of a network are studied. For both dynamic network models the set of relaxation times and the transformation from Cartesian coordinates of network elements to normal modes are obtained. Using the normal mode transformation obtained, in Part 2 of this series the exact analytical expressions for various local dynamic characteristics of the polymer network having a two‐dimensional connectivity will be calculated.</description><subject>Beads</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Relaxation time</subject><subject>Springs</subject><subject>Transformations</subject><subject>Two dimensional</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkFtP20AQRi0EUrn0P_gRpG66F9trh6pSSMu9iVQCSLyMFu9YdbG96a5Rkn_PRAHUh750X3Znv5kjzYmioeADwbn8LFIpmCpEcSg5nZyLo2KovyRcD4eji2_sx2h2Q8VXNeCD8fRYspOtaPd9aJveXEomVJJ8iPZC-E2MotByN6pnv9D5Veyq2GNjlqavXRfPvZuj72sM66BfOGbrFrtAmWniuWtWLfq4Q0r8U_gUi0E8cb6lrHWWhkxn_8b1NBwOop3KNAE_vt770e3p99n4nF1Pzy7Go2tWKp1rZlSR26J6TJWlMsHMVAZLmduKa6uFroyRKRqZlSXPVZmmJSbUkHFrcmnVo9qPDjdcWuLPM4Ye2jqU2DSmQ_ccQMgs04nI0pRaf25aS-9C8FjB3Net8SsQHNbeYa0Q1grhzTsUoIFUA5B3ePUOCjiMpyDhhKB3G-iibnD1P8R_A9--CMw24Dr0uHwHG_8EmVY6hfvJGZw_qKubyeQS7tQLbVel4w</recordid><startdate>200008</startdate><enddate>200008</enddate><creator>Gotlib, Yuli Ya</creator><creator>Gurtovenko, Andrew A.</creator><general>WILEY-VCH Verlag GmbH</general><general>WILEY‐VCH Verlag GmbH</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200008</creationdate><title>Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times</title><author>Gotlib, Yuli Ya ; Gurtovenko, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3787-a398d9fb53d7874e6afaec28df07d717faa25ea26cc083c55ce4aec60da82d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Beads</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Relaxation time</topic><topic>Springs</topic><topic>Transformations</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gotlib, Yuli Ya</creatorcontrib><creatorcontrib>Gurtovenko, Andrew A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gotlib, Yuli Ya</au><au>Gurtovenko, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times</atitle><jtitle>Macromolecular theory and simulations</jtitle><addtitle>Macromol. Theory Simul</addtitle><date>2000-08</date><risdate>2000</risdate><volume>9</volume><issue>7</issue><spage>407</spage><epage>415</epage><pages>407-415</pages><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer network consisting of “bead and spring” Rouse chains and the simplified coarse‐grained network model describing only the large‐scale collective relaxation of a network are studied. For both dynamic network models the set of relaxation times and the transformation from Cartesian coordinates of network elements to normal modes are obtained. Using the normal mode transformation obtained, in Part 2 of this series the exact analytical expressions for various local dynamic characteristics of the polymer network having a two‐dimensional connectivity will be calculated.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag GmbH</pub><doi>10.1002/1521-3919(20000801)9:7&lt;407::AID-MATS407&gt;3.0.CO;2-B</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1344
ispartof Macromolecular theory and simulations, 2000-08, Vol.9 (7), p.407-415
issn 1022-1344
1521-3919
language eng
recordid cdi_proquest_miscellaneous_1266741655
source Wiley Online Library Journals Frontfile Complete
subjects Beads
Mathematical analysis
Mathematical models
Networks
Relaxation time
Springs
Transformations
Two dimensional
title Theory of relaxation properties of two-dimensional polymer networks, 1. Normal modes and relaxation times
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20relaxation%20properties%20of%20two-dimensional%20polymer%20networks,%201.%20Normal%20modes%20and%20relaxation%20times&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Gotlib,%20Yuli%20Ya&rft.date=2000-08&rft.volume=9&rft.issue=7&rft.spage=407&rft.epage=415&rft.pages=407-415&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/1521-3919(20000801)9:7%3C407::AID-MATS407%3E3.0.CO;2-B&rft_dat=%3Cproquest_cross%3E1266741655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266741655&rft_id=info:pmid/&rfr_iscdi=true