Viscoelastic dynamic properties of heterogeneous polymer networks with domain structure

A dynamic model of a heterogeneous polymer network system is proposed. A polymer network is presented as an ensemble of cross‐linked regions (domains) of different sizes, the domains have similarly regular internal structures. To a first approximation, these domains are treated independently of each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular theory and simulations 2000-08, Vol.9 (7), p.388-397
Hauptverfasser: Gurtovenko, Andrew A., Gotlib, Yuli Ya, Kilian, Hanns-Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 7
container_start_page 388
container_title Macromolecular theory and simulations
container_volume 9
creator Gurtovenko, Andrew A.
Gotlib, Yuli Ya
Kilian, Hanns-Georg
description A dynamic model of a heterogeneous polymer network system is proposed. A polymer network is presented as an ensemble of cross‐linked regions (domains) of different sizes, the domains have similarly regular internal structures. To a first approximation, these domains are treated independently of each other. Relaxation modulus, storage modulus, and loss modulus of the heterogeneous polymer network are calculated. For the purpose of averaging over all network domains the exponential number distribution of chain segments in domains is used. This type of distribution has been previously proposed by one of the authors in the frame of the aggregation model. It is shown that a structure heterogeneity introduced into a network model according to the above domain approach leads, at long times, to the stretched exponential type of time dependence of relaxation modulus instead of the power‐law dependence predicted by the theories dealing with regular networks. The network heterogeneity also leads to a more rapid decrease in the storage modulus in the region of low frequencies, as compared with regular polymer networks. It is shown that the loss modulus in the region of its maximum is very slightly sensitive to the “long‐range” network heterogeneity considered.
doi_str_mv 10.1002/1521-3919(20000801)9:7<388::AID-MATS388>3.0.CO;2-G
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266741636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266741636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3788-4b2b4d847185678bafaf3a6125bb545099cd65c51e6891e7bf4c5db648068b313</originalsourceid><addsrcrecordid>eNqVkE1v00AQhi0EEqXtf_CxHBz2w_vhgJAiA26ltJFKSY-jtT2mpnY27G4U8u-7adqeuHQvszuaefTukyRTSiaUEPaJCkYzXtDijJF4NKEfi6n6wrWeTmcX37LL2c3P-PjKJ2RSLj6zrHqTHL0svY13wlhGeZ6_Tz54_ycyikKxo-R22fvG4mB86Ju03a3MGOva2TW60KNPbZfeYUBnf-MK7canazvsRnTpCsPWunufbvtwl7Z2NP0q9cFtmrBxeJK868zg8fSpHie_fny_Kc-z-aK6KGfzrOFK6yyvWZ23OldUC6l0bTrTcSMpE3UtchFDNq0UjaAodUFR1V3eiLaWuSZS15zy4-TswI2R_27QBxjjh3AYzGNaoExKlVPJZRy9Pow2znrvsIO160fjdkAJ7C3DXhjshcGzZShAQRQLEC3Dk2XgQKBcAIMqQpcH6LYfcPca4v-Bz60Izg7g3gf89wI27h6k4krA7VUF1VJfzy-vSmD8AUdZnv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266741636</pqid></control><display><type>article</type><title>Viscoelastic dynamic properties of heterogeneous polymer networks with domain structure</title><source>Wiley Online Library All Journals</source><creator>Gurtovenko, Andrew A. ; Gotlib, Yuli Ya ; Kilian, Hanns-Georg</creator><creatorcontrib>Gurtovenko, Andrew A. ; Gotlib, Yuli Ya ; Kilian, Hanns-Georg</creatorcontrib><description>A dynamic model of a heterogeneous polymer network system is proposed. A polymer network is presented as an ensemble of cross‐linked regions (domains) of different sizes, the domains have similarly regular internal structures. To a first approximation, these domains are treated independently of each other. Relaxation modulus, storage modulus, and loss modulus of the heterogeneous polymer network are calculated. For the purpose of averaging over all network domains the exponential number distribution of chain segments in domains is used. This type of distribution has been previously proposed by one of the authors in the frame of the aggregation model. It is shown that a structure heterogeneity introduced into a network model according to the above domain approach leads, at long times, to the stretched exponential type of time dependence of relaxation modulus instead of the power‐law dependence predicted by the theories dealing with regular networks. The network heterogeneity also leads to a more rapid decrease in the storage modulus in the region of low frequencies, as compared with regular polymer networks. It is shown that the loss modulus in the region of its maximum is very slightly sensitive to the “long‐range” network heterogeneity considered.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/1521-3919(20000801)9:7&lt;388::AID-MATS388&gt;3.0.CO;2-G</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag GmbH</publisher><subject>Crosslinking ; Dynamical systems ; Dynamics ; Heterogeneity ; Loss modulus ; Mathematical models ; Networks ; Storage modulus</subject><ispartof>Macromolecular theory and simulations, 2000-08, Vol.9 (7), p.388-397</ispartof><rights>2000 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1521-3919%2820000801%299%3A7%3C388%3A%3AAID-MATS388%3E3.0.CO%3B2-G$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1521-3919%2820000801%299%3A7%3C388%3A%3AAID-MATS388%3E3.0.CO%3B2-G$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gurtovenko, Andrew A.</creatorcontrib><creatorcontrib>Gotlib, Yuli Ya</creatorcontrib><creatorcontrib>Kilian, Hanns-Georg</creatorcontrib><title>Viscoelastic dynamic properties of heterogeneous polymer networks with domain structure</title><title>Macromolecular theory and simulations</title><addtitle>Macromol. Theory Simul</addtitle><description>A dynamic model of a heterogeneous polymer network system is proposed. A polymer network is presented as an ensemble of cross‐linked regions (domains) of different sizes, the domains have similarly regular internal structures. To a first approximation, these domains are treated independently of each other. Relaxation modulus, storage modulus, and loss modulus of the heterogeneous polymer network are calculated. For the purpose of averaging over all network domains the exponential number distribution of chain segments in domains is used. This type of distribution has been previously proposed by one of the authors in the frame of the aggregation model. It is shown that a structure heterogeneity introduced into a network model according to the above domain approach leads, at long times, to the stretched exponential type of time dependence of relaxation modulus instead of the power‐law dependence predicted by the theories dealing with regular networks. The network heterogeneity also leads to a more rapid decrease in the storage modulus in the region of low frequencies, as compared with regular polymer networks. It is shown that the loss modulus in the region of its maximum is very slightly sensitive to the “long‐range” network heterogeneity considered.</description><subject>Crosslinking</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Heterogeneity</subject><subject>Loss modulus</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Storage modulus</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkE1v00AQhi0EEqXtf_CxHBz2w_vhgJAiA26ltJFKSY-jtT2mpnY27G4U8u-7adqeuHQvszuaefTukyRTSiaUEPaJCkYzXtDijJF4NKEfi6n6wrWeTmcX37LL2c3P-PjKJ2RSLj6zrHqTHL0svY13wlhGeZ6_Tz54_ycyikKxo-R22fvG4mB86Ju03a3MGOva2TW60KNPbZfeYUBnf-MK7canazvsRnTpCsPWunufbvtwl7Z2NP0q9cFtmrBxeJK868zg8fSpHie_fny_Kc-z-aK6KGfzrOFK6yyvWZ23OldUC6l0bTrTcSMpE3UtchFDNq0UjaAodUFR1V3eiLaWuSZS15zy4-TswI2R_27QBxjjh3AYzGNaoExKlVPJZRy9Pow2znrvsIO160fjdkAJ7C3DXhjshcGzZShAQRQLEC3Dk2XgQKBcAIMqQpcH6LYfcPca4v-Bz60Izg7g3gf89wI27h6k4krA7VUF1VJfzy-vSmD8AUdZnv4</recordid><startdate>200008</startdate><enddate>200008</enddate><creator>Gurtovenko, Andrew A.</creator><creator>Gotlib, Yuli Ya</creator><creator>Kilian, Hanns-Georg</creator><general>WILEY-VCH Verlag GmbH</general><general>WILEY‐VCH Verlag GmbH</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200008</creationdate><title>Viscoelastic dynamic properties of heterogeneous polymer networks with domain structure</title><author>Gurtovenko, Andrew A. ; Gotlib, Yuli Ya ; Kilian, Hanns-Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3788-4b2b4d847185678bafaf3a6125bb545099cd65c51e6891e7bf4c5db648068b313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Crosslinking</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Heterogeneity</topic><topic>Loss modulus</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Storage modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurtovenko, Andrew A.</creatorcontrib><creatorcontrib>Gotlib, Yuli Ya</creatorcontrib><creatorcontrib>Kilian, Hanns-Georg</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurtovenko, Andrew A.</au><au>Gotlib, Yuli Ya</au><au>Kilian, Hanns-Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic dynamic properties of heterogeneous polymer networks with domain structure</atitle><jtitle>Macromolecular theory and simulations</jtitle><addtitle>Macromol. Theory Simul</addtitle><date>2000-08</date><risdate>2000</risdate><volume>9</volume><issue>7</issue><spage>388</spage><epage>397</epage><pages>388-397</pages><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>A dynamic model of a heterogeneous polymer network system is proposed. A polymer network is presented as an ensemble of cross‐linked regions (domains) of different sizes, the domains have similarly regular internal structures. To a first approximation, these domains are treated independently of each other. Relaxation modulus, storage modulus, and loss modulus of the heterogeneous polymer network are calculated. For the purpose of averaging over all network domains the exponential number distribution of chain segments in domains is used. This type of distribution has been previously proposed by one of the authors in the frame of the aggregation model. It is shown that a structure heterogeneity introduced into a network model according to the above domain approach leads, at long times, to the stretched exponential type of time dependence of relaxation modulus instead of the power‐law dependence predicted by the theories dealing with regular networks. The network heterogeneity also leads to a more rapid decrease in the storage modulus in the region of low frequencies, as compared with regular polymer networks. It is shown that the loss modulus in the region of its maximum is very slightly sensitive to the “long‐range” network heterogeneity considered.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag GmbH</pub><doi>10.1002/1521-3919(20000801)9:7&lt;388::AID-MATS388&gt;3.0.CO;2-G</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1344
ispartof Macromolecular theory and simulations, 2000-08, Vol.9 (7), p.388-397
issn 1022-1344
1521-3919
language eng
recordid cdi_proquest_miscellaneous_1266741636
source Wiley Online Library All Journals
subjects Crosslinking
Dynamical systems
Dynamics
Heterogeneity
Loss modulus
Mathematical models
Networks
Storage modulus
title Viscoelastic dynamic properties of heterogeneous polymer networks with domain structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20dynamic%20properties%20of%20heterogeneous%20polymer%20networks%20with%20domain%20structure&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Gurtovenko,%20Andrew%20A.&rft.date=2000-08&rft.volume=9&rft.issue=7&rft.spage=388&rft.epage=397&rft.pages=388-397&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/1521-3919(20000801)9:7%3C388::AID-MATS388%3E3.0.CO;2-G&rft_dat=%3Cproquest_cross%3E1266741636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266741636&rft_id=info:pmid/&rfr_iscdi=true