Long Term Load Forecasting and Recommendations for China Based on Support Vector Regression
Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like China as the growth rate of gross domestic product (GDP) is expected to be 7.5%, acco...
Gespeichert in:
Veröffentlicht in: | Dian li yu neng yuan 2012-09, Vol.4 (5), p.380-385 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 385 |
---|---|
container_issue | 5 |
container_start_page | 380 |
container_title | Dian li yu neng yuan |
container_volume | 4 |
creator | Ye, Shijie Zhu, Guangfu Xiao, Zhi |
description | Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like China as the growth rate of gross domestic product (GDP) is expected to be 7.5%, according to China's 11th Five-Year Plan (2006-2010). In this paper, LTLF with an economic factor, GDP, is implemented. A support vector regression (SVR) is applied as the training algo-rithm to obtain the nonlinear relationship between load and the economic factor GDP to improve the accuracy of forecasting. |
doi_str_mv | 10.4236/epe.2012.45050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266713652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266713652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1570-6a126a4ebe030881d7af8e6e146c5854508211724aa1e4fb289b08b1fe435e293</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRsNRePe_RS-J-Z3PUYlUICLWK4GHZJJMaaXbjbnrw37ttncsMMw8vzIPQNSW5YFzdwgg5I5TlQhJJztCMlqLIuKb6_DiXGRP84xItYvwmqYSSSpUz9Fl5t8UbCAOuvG3xygdobJz6tLWuxWto_DCAa-3Uexdx5wNefvXO4nsbocXe4df9OPow4XdopnRdwzZAjIm-Qhed3UVY_Pc5els9bJZPWfXy-Ly8q7KGyoJkylKmrIAaCCda07awnQYFVKhGapke0ozSgglrKYiuZrqsia5pB4JLYCWfo5tT7hj8zx7iZIY-NrDbWQd-H02KVwXlSrKE5ie0CT7GAJ0ZQz_Y8GsoMQeRJok0B5HmKJL_Acv2ZX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266713652</pqid></control><display><type>article</type><title>Long Term Load Forecasting and Recommendations for China Based on Support Vector Regression</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ye, Shijie ; Zhu, Guangfu ; Xiao, Zhi</creator><creatorcontrib>Ye, Shijie ; Zhu, Guangfu ; Xiao, Zhi</creatorcontrib><description>Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like China as the growth rate of gross domestic product (GDP) is expected to be 7.5%, according to China's 11th Five-Year Plan (2006-2010). In this paper, LTLF with an economic factor, GDP, is implemented. A support vector regression (SVR) is applied as the training algo-rithm to obtain the nonlinear relationship between load and the economic factor GDP to improve the accuracy of forecasting.</description><identifier>ISSN: 1949-243X</identifier><identifier>ISSN: 1947-3818</identifier><identifier>EISSN: 1947-3818</identifier><identifier>DOI: 10.4236/epe.2012.45050</identifier><language>eng</language><subject>China ; Domestic ; Economic factors ; Forecasting ; Mathematical analysis ; Regression ; Tasks ; Vectors (mathematics)</subject><ispartof>Dian li yu neng yuan, 2012-09, Vol.4 (5), p.380-385</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1570-6a126a4ebe030881d7af8e6e146c5854508211724aa1e4fb289b08b1fe435e293</citedby><cites>FETCH-LOGICAL-c1570-6a126a4ebe030881d7af8e6e146c5854508211724aa1e4fb289b08b1fe435e293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Ye, Shijie</creatorcontrib><creatorcontrib>Zhu, Guangfu</creatorcontrib><creatorcontrib>Xiao, Zhi</creatorcontrib><title>Long Term Load Forecasting and Recommendations for China Based on Support Vector Regression</title><title>Dian li yu neng yuan</title><description>Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like China as the growth rate of gross domestic product (GDP) is expected to be 7.5%, according to China's 11th Five-Year Plan (2006-2010). In this paper, LTLF with an economic factor, GDP, is implemented. A support vector regression (SVR) is applied as the training algo-rithm to obtain the nonlinear relationship between load and the economic factor GDP to improve the accuracy of forecasting.</description><subject>China</subject><subject>Domestic</subject><subject>Economic factors</subject><subject>Forecasting</subject><subject>Mathematical analysis</subject><subject>Regression</subject><subject>Tasks</subject><subject>Vectors (mathematics)</subject><issn>1949-243X</issn><issn>1947-3818</issn><issn>1947-3818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkE1Lw0AQhhdRsNRePe_RS-J-Z3PUYlUICLWK4GHZJJMaaXbjbnrw37ttncsMMw8vzIPQNSW5YFzdwgg5I5TlQhJJztCMlqLIuKb6_DiXGRP84xItYvwmqYSSSpUz9Fl5t8UbCAOuvG3xygdobJz6tLWuxWto_DCAa-3Uexdx5wNefvXO4nsbocXe4df9OPow4XdopnRdwzZAjIm-Qhed3UVY_Pc5els9bJZPWfXy-Ly8q7KGyoJkylKmrIAaCCda07awnQYFVKhGapke0ozSgglrKYiuZrqsia5pB4JLYCWfo5tT7hj8zx7iZIY-NrDbWQd-H02KVwXlSrKE5ie0CT7GAJ0ZQz_Y8GsoMQeRJok0B5HmKJL_Acv2ZX4</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Ye, Shijie</creator><creator>Zhu, Guangfu</creator><creator>Xiao, Zhi</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120901</creationdate><title>Long Term Load Forecasting and Recommendations for China Based on Support Vector Regression</title><author>Ye, Shijie ; Zhu, Guangfu ; Xiao, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1570-6a126a4ebe030881d7af8e6e146c5854508211724aa1e4fb289b08b1fe435e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>China</topic><topic>Domestic</topic><topic>Economic factors</topic><topic>Forecasting</topic><topic>Mathematical analysis</topic><topic>Regression</topic><topic>Tasks</topic><topic>Vectors (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Ye, Shijie</creatorcontrib><creatorcontrib>Zhu, Guangfu</creatorcontrib><creatorcontrib>Xiao, Zhi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Dian li yu neng yuan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Shijie</au><au>Zhu, Guangfu</au><au>Xiao, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long Term Load Forecasting and Recommendations for China Based on Support Vector Regression</atitle><jtitle>Dian li yu neng yuan</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>4</volume><issue>5</issue><spage>380</spage><epage>385</epage><pages>380-385</pages><issn>1949-243X</issn><issn>1947-3818</issn><eissn>1947-3818</eissn><abstract>Long-term load forecasting (LTLF) is a challenging task because of the complex relationships between load and factors affecting load. However, it is crucial for the economic growth of fast developing countries like China as the growth rate of gross domestic product (GDP) is expected to be 7.5%, according to China's 11th Five-Year Plan (2006-2010). In this paper, LTLF with an economic factor, GDP, is implemented. A support vector regression (SVR) is applied as the training algo-rithm to obtain the nonlinear relationship between load and the economic factor GDP to improve the accuracy of forecasting.</abstract><doi>10.4236/epe.2012.45050</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-243X |
ispartof | Dian li yu neng yuan, 2012-09, Vol.4 (5), p.380-385 |
issn | 1949-243X 1947-3818 1947-3818 |
language | eng |
recordid | cdi_proquest_miscellaneous_1266713652 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | China Domestic Economic factors Forecasting Mathematical analysis Regression Tasks Vectors (mathematics) |
title | Long Term Load Forecasting and Recommendations for China Based on Support Vector Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20Term%20Load%20Forecasting%20and%20Recommendations%20for%20China%20Based%20on%20Support%20Vector%20Regression&rft.jtitle=Dian%20li%20yu%20neng%20yuan&rft.au=Ye,%20Shijie&rft.date=2012-09-01&rft.volume=4&rft.issue=5&rft.spage=380&rft.epage=385&rft.pages=380-385&rft.issn=1949-243X&rft.eissn=1947-3818&rft_id=info:doi/10.4236/epe.2012.45050&rft_dat=%3Cproquest_cross%3E1266713652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266713652&rft_id=info:pmid/&rfr_iscdi=true |