Infrared temperature measurement for remote monitoring in cold climates
This paper presents a novel method of non-contact infrared thermometry optimized for remote monitoring in cold climates. The method consists of selectively heating the optics of the instrument in order to prevent ice forming on the lens and blocking infrared energy. A self-calibration method is used...
Gespeichert in:
Veröffentlicht in: | Measurement science & technology 2012-11, Vol.23 (11), p.114001-1-6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1-6 |
---|---|
container_issue | 11 |
container_start_page | 114001 |
container_title | Measurement science & technology |
container_volume | 23 |
creator | Barry, Tim Fuller, Gary Hayatleh, Khaled |
description | This paper presents a novel method of non-contact infrared thermometry optimized for remote monitoring in cold climates. The method consists of selectively heating the optics of the instrument in order to prevent ice forming on the lens and blocking infrared energy. A self-calibration method is used to remove the errors caused by thermal shock when the heaters are cycled. Applications for this instrument include the monitoring of roads and railways to detect ice as well as long-term environmental studies. The self-calibration technique is shown to maintain an accuracy of ±1 °C in ambient temperatures as low as −20 °C. This compares with errors of over 20 °C in a conventional infrared thermometer. |
doi_str_mv | 10.1088/0957-0233/23/11/114001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266712860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266712860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-287e35d59757bfb07778143db22ed179456c5182dc2186b87b292f071b6afca43</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BenRS92ZpE3Soyy6Lix40XNI01S6tE1N0oP_3pSKV2HgDcN7w8xHyD3CI4KUO6hKkQNlbEfZDjFVAYAXZIOMY85LwEuy-TNdk5sQzgAgoKo25HAcW6-9bbJoh8l6HWdvs8HqkHSwY8xa57PUupjGbuyi8934mXVjZlzfZKbvBh1tuCVXre6DvfvVLfl4eX7fv-ant8Nx_3TKDRM05lQKy8qmrEQp6rYGIYTEgjU1pbZBURUlNyVK2hiKktdS1LSiLQisuW6NLtiWPKx7J---ZhuiGrpgbN_r0bo5KKScC6SSQ7Ly1Wq8C8HbVk0-Heu_FYJayKkFilqgKMoUolrJpSBdg52b1NnNfkwf_Rf6AQX1b20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266712860</pqid></control><display><type>article</type><title>Infrared temperature measurement for remote monitoring in cold climates</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Barry, Tim ; Fuller, Gary ; Hayatleh, Khaled</creator><creatorcontrib>Barry, Tim ; Fuller, Gary ; Hayatleh, Khaled</creatorcontrib><description>This paper presents a novel method of non-contact infrared thermometry optimized for remote monitoring in cold climates. The method consists of selectively heating the optics of the instrument in order to prevent ice forming on the lens and blocking infrared energy. A self-calibration method is used to remove the errors caused by thermal shock when the heaters are cycled. Applications for this instrument include the monitoring of roads and railways to detect ice as well as long-term environmental studies. The self-calibration technique is shown to maintain an accuracy of ±1 °C in ambient temperatures as low as −20 °C. This compares with errors of over 20 °C in a conventional infrared thermometer.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/0957-0233/23/11/114001</identifier><identifier>CODEN: MSTCEP</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Climate ; Environmental studies ; Errors ; Heaters ; Heating ; Infrared ; Railway engineering ; Remote monitoring ; temperature measurement ; thermopile</subject><ispartof>Measurement science & technology, 2012-11, Vol.23 (11), p.114001-1-6</ispartof><rights>2012 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-287e35d59757bfb07778143db22ed179456c5182dc2186b87b292f071b6afca43</citedby><cites>FETCH-LOGICAL-c372t-287e35d59757bfb07778143db22ed179456c5182dc2186b87b292f071b6afca43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-0233/23/11/114001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Barry, Tim</creatorcontrib><creatorcontrib>Fuller, Gary</creatorcontrib><creatorcontrib>Hayatleh, Khaled</creatorcontrib><title>Infrared temperature measurement for remote monitoring in cold climates</title><title>Measurement science & technology</title><addtitle>MST</addtitle><addtitle>Meas. Sci. Technol</addtitle><description>This paper presents a novel method of non-contact infrared thermometry optimized for remote monitoring in cold climates. The method consists of selectively heating the optics of the instrument in order to prevent ice forming on the lens and blocking infrared energy. A self-calibration method is used to remove the errors caused by thermal shock when the heaters are cycled. Applications for this instrument include the monitoring of roads and railways to detect ice as well as long-term environmental studies. The self-calibration technique is shown to maintain an accuracy of ±1 °C in ambient temperatures as low as −20 °C. This compares with errors of over 20 °C in a conventional infrared thermometer.</description><subject>Climate</subject><subject>Environmental studies</subject><subject>Errors</subject><subject>Heaters</subject><subject>Heating</subject><subject>Infrared</subject><subject>Railway engineering</subject><subject>Remote monitoring</subject><subject>temperature measurement</subject><subject>thermopile</subject><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BenRS92ZpE3Soyy6Lix40XNI01S6tE1N0oP_3pSKV2HgDcN7w8xHyD3CI4KUO6hKkQNlbEfZDjFVAYAXZIOMY85LwEuy-TNdk5sQzgAgoKo25HAcW6-9bbJoh8l6HWdvs8HqkHSwY8xa57PUupjGbuyi8934mXVjZlzfZKbvBh1tuCVXre6DvfvVLfl4eX7fv-ant8Nx_3TKDRM05lQKy8qmrEQp6rYGIYTEgjU1pbZBURUlNyVK2hiKktdS1LSiLQisuW6NLtiWPKx7J---ZhuiGrpgbN_r0bo5KKScC6SSQ7Ly1Wq8C8HbVk0-Heu_FYJayKkFilqgKMoUolrJpSBdg52b1NnNfkwf_Rf6AQX1b20</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Barry, Tim</creator><creator>Fuller, Gary</creator><creator>Hayatleh, Khaled</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121101</creationdate><title>Infrared temperature measurement for remote monitoring in cold climates</title><author>Barry, Tim ; Fuller, Gary ; Hayatleh, Khaled</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-287e35d59757bfb07778143db22ed179456c5182dc2186b87b292f071b6afca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Climate</topic><topic>Environmental studies</topic><topic>Errors</topic><topic>Heaters</topic><topic>Heating</topic><topic>Infrared</topic><topic>Railway engineering</topic><topic>Remote monitoring</topic><topic>temperature measurement</topic><topic>thermopile</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barry, Tim</creatorcontrib><creatorcontrib>Fuller, Gary</creatorcontrib><creatorcontrib>Hayatleh, Khaled</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barry, Tim</au><au>Fuller, Gary</au><au>Hayatleh, Khaled</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared temperature measurement for remote monitoring in cold climates</atitle><jtitle>Measurement science & technology</jtitle><stitle>MST</stitle><addtitle>Meas. Sci. Technol</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>23</volume><issue>11</issue><spage>114001</spage><epage>1-6</epage><pages>114001-1-6</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><coden>MSTCEP</coden><abstract>This paper presents a novel method of non-contact infrared thermometry optimized for remote monitoring in cold climates. The method consists of selectively heating the optics of the instrument in order to prevent ice forming on the lens and blocking infrared energy. A self-calibration method is used to remove the errors caused by thermal shock when the heaters are cycled. Applications for this instrument include the monitoring of roads and railways to detect ice as well as long-term environmental studies. The self-calibration technique is shown to maintain an accuracy of ±1 °C in ambient temperatures as low as −20 °C. This compares with errors of over 20 °C in a conventional infrared thermometer.</abstract><pub>IOP Publishing</pub><doi>10.1088/0957-0233/23/11/114001</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2012-11, Vol.23 (11), p.114001-1-6 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_proquest_miscellaneous_1266712860 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Climate Environmental studies Errors Heaters Heating Infrared Railway engineering Remote monitoring temperature measurement thermopile |
title | Infrared temperature measurement for remote monitoring in cold climates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20temperature%20measurement%20for%20remote%20monitoring%20in%20cold%20climates&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Barry,%20Tim&rft.date=2012-11-01&rft.volume=23&rft.issue=11&rft.spage=114001&rft.epage=1-6&rft.pages=114001-1-6&rft.issn=0957-0233&rft.eissn=1361-6501&rft.coden=MSTCEP&rft_id=info:doi/10.1088/0957-0233/23/11/114001&rft_dat=%3Cproquest_iop_j%3E1266712860%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266712860&rft_id=info:pmid/&rfr_iscdi=true |