Infrared temperature measurement for remote monitoring in cold climates

This paper presents a novel method of non-contact infrared thermometry optimized for remote monitoring in cold climates. The method consists of selectively heating the optics of the instrument in order to prevent ice forming on the lens and blocking infrared energy. A self-calibration method is used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2012-11, Vol.23 (11), p.114001-1-6
Hauptverfasser: Barry, Tim, Fuller, Gary, Hayatleh, Khaled
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1-6
container_issue 11
container_start_page 114001
container_title Measurement science & technology
container_volume 23
creator Barry, Tim
Fuller, Gary
Hayatleh, Khaled
description This paper presents a novel method of non-contact infrared thermometry optimized for remote monitoring in cold climates. The method consists of selectively heating the optics of the instrument in order to prevent ice forming on the lens and blocking infrared energy. A self-calibration method is used to remove the errors caused by thermal shock when the heaters are cycled. Applications for this instrument include the monitoring of roads and railways to detect ice as well as long-term environmental studies. The self-calibration technique is shown to maintain an accuracy of ±1 °C in ambient temperatures as low as −20 °C. This compares with errors of over 20 °C in a conventional infrared thermometer.
doi_str_mv 10.1088/0957-0233/23/11/114001
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266712860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266712860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-287e35d59757bfb07778143db22ed179456c5182dc2186b87b292f071b6afca43</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BenRS92ZpE3Soyy6Lix40XNI01S6tE1N0oP_3pSKV2HgDcN7w8xHyD3CI4KUO6hKkQNlbEfZDjFVAYAXZIOMY85LwEuy-TNdk5sQzgAgoKo25HAcW6-9bbJoh8l6HWdvs8HqkHSwY8xa57PUupjGbuyi8934mXVjZlzfZKbvBh1tuCVXre6DvfvVLfl4eX7fv-ant8Nx_3TKDRM05lQKy8qmrEQp6rYGIYTEgjU1pbZBURUlNyVK2hiKktdS1LSiLQisuW6NLtiWPKx7J---ZhuiGrpgbN_r0bo5KKScC6SSQ7Ly1Wq8C8HbVk0-Heu_FYJayKkFilqgKMoUolrJpSBdg52b1NnNfkwf_Rf6AQX1b20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266712860</pqid></control><display><type>article</type><title>Infrared temperature measurement for remote monitoring in cold climates</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Barry, Tim ; Fuller, Gary ; Hayatleh, Khaled</creator><creatorcontrib>Barry, Tim ; Fuller, Gary ; Hayatleh, Khaled</creatorcontrib><description>This paper presents a novel method of non-contact infrared thermometry optimized for remote monitoring in cold climates. The method consists of selectively heating the optics of the instrument in order to prevent ice forming on the lens and blocking infrared energy. A self-calibration method is used to remove the errors caused by thermal shock when the heaters are cycled. Applications for this instrument include the monitoring of roads and railways to detect ice as well as long-term environmental studies. The self-calibration technique is shown to maintain an accuracy of ±1 °C in ambient temperatures as low as −20 °C. This compares with errors of over 20 °C in a conventional infrared thermometer.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/0957-0233/23/11/114001</identifier><identifier>CODEN: MSTCEP</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Climate ; Environmental studies ; Errors ; Heaters ; Heating ; Infrared ; Railway engineering ; Remote monitoring ; temperature measurement ; thermopile</subject><ispartof>Measurement science &amp; technology, 2012-11, Vol.23 (11), p.114001-1-6</ispartof><rights>2012 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-287e35d59757bfb07778143db22ed179456c5182dc2186b87b292f071b6afca43</citedby><cites>FETCH-LOGICAL-c372t-287e35d59757bfb07778143db22ed179456c5182dc2186b87b292f071b6afca43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-0233/23/11/114001/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Barry, Tim</creatorcontrib><creatorcontrib>Fuller, Gary</creatorcontrib><creatorcontrib>Hayatleh, Khaled</creatorcontrib><title>Infrared temperature measurement for remote monitoring in cold climates</title><title>Measurement science &amp; technology</title><addtitle>MST</addtitle><addtitle>Meas. Sci. Technol</addtitle><description>This paper presents a novel method of non-contact infrared thermometry optimized for remote monitoring in cold climates. The method consists of selectively heating the optics of the instrument in order to prevent ice forming on the lens and blocking infrared energy. A self-calibration method is used to remove the errors caused by thermal shock when the heaters are cycled. Applications for this instrument include the monitoring of roads and railways to detect ice as well as long-term environmental studies. The self-calibration technique is shown to maintain an accuracy of ±1 °C in ambient temperatures as low as −20 °C. This compares with errors of over 20 °C in a conventional infrared thermometer.</description><subject>Climate</subject><subject>Environmental studies</subject><subject>Errors</subject><subject>Heaters</subject><subject>Heating</subject><subject>Infrared</subject><subject>Railway engineering</subject><subject>Remote monitoring</subject><subject>temperature measurement</subject><subject>thermopile</subject><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BenRS92ZpE3Soyy6Lix40XNI01S6tE1N0oP_3pSKV2HgDcN7w8xHyD3CI4KUO6hKkQNlbEfZDjFVAYAXZIOMY85LwEuy-TNdk5sQzgAgoKo25HAcW6-9bbJoh8l6HWdvs8HqkHSwY8xa57PUupjGbuyi8934mXVjZlzfZKbvBh1tuCVXre6DvfvVLfl4eX7fv-ant8Nx_3TKDRM05lQKy8qmrEQp6rYGIYTEgjU1pbZBURUlNyVK2hiKktdS1LSiLQisuW6NLtiWPKx7J---ZhuiGrpgbN_r0bo5KKScC6SSQ7Ly1Wq8C8HbVk0-Heu_FYJayKkFilqgKMoUolrJpSBdg52b1NnNfkwf_Rf6AQX1b20</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Barry, Tim</creator><creator>Fuller, Gary</creator><creator>Hayatleh, Khaled</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121101</creationdate><title>Infrared temperature measurement for remote monitoring in cold climates</title><author>Barry, Tim ; Fuller, Gary ; Hayatleh, Khaled</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-287e35d59757bfb07778143db22ed179456c5182dc2186b87b292f071b6afca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Climate</topic><topic>Environmental studies</topic><topic>Errors</topic><topic>Heaters</topic><topic>Heating</topic><topic>Infrared</topic><topic>Railway engineering</topic><topic>Remote monitoring</topic><topic>temperature measurement</topic><topic>thermopile</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barry, Tim</creatorcontrib><creatorcontrib>Fuller, Gary</creatorcontrib><creatorcontrib>Hayatleh, Khaled</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barry, Tim</au><au>Fuller, Gary</au><au>Hayatleh, Khaled</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared temperature measurement for remote monitoring in cold climates</atitle><jtitle>Measurement science &amp; technology</jtitle><stitle>MST</stitle><addtitle>Meas. Sci. Technol</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>23</volume><issue>11</issue><spage>114001</spage><epage>1-6</epage><pages>114001-1-6</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><coden>MSTCEP</coden><abstract>This paper presents a novel method of non-contact infrared thermometry optimized for remote monitoring in cold climates. The method consists of selectively heating the optics of the instrument in order to prevent ice forming on the lens and blocking infrared energy. A self-calibration method is used to remove the errors caused by thermal shock when the heaters are cycled. Applications for this instrument include the monitoring of roads and railways to detect ice as well as long-term environmental studies. The self-calibration technique is shown to maintain an accuracy of ±1 °C in ambient temperatures as low as −20 °C. This compares with errors of over 20 °C in a conventional infrared thermometer.</abstract><pub>IOP Publishing</pub><doi>10.1088/0957-0233/23/11/114001</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2012-11, Vol.23 (11), p.114001-1-6
issn 0957-0233
1361-6501
language eng
recordid cdi_proquest_miscellaneous_1266712860
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Climate
Environmental studies
Errors
Heaters
Heating
Infrared
Railway engineering
Remote monitoring
temperature measurement
thermopile
title Infrared temperature measurement for remote monitoring in cold climates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20temperature%20measurement%20for%20remote%20monitoring%20in%20cold%20climates&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Barry,%20Tim&rft.date=2012-11-01&rft.volume=23&rft.issue=11&rft.spage=114001&rft.epage=1-6&rft.pages=114001-1-6&rft.issn=0957-0233&rft.eissn=1361-6501&rft.coden=MSTCEP&rft_id=info:doi/10.1088/0957-0233/23/11/114001&rft_dat=%3Cproquest_iop_j%3E1266712860%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266712860&rft_id=info:pmid/&rfr_iscdi=true