Modeling and simulation of the CLS cryogenic system
This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2013-01, Vol.37 (1-2), p.34-49 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1-2 |
container_start_page | 34 |
container_title | Applied mathematical modelling |
container_volume | 37 |
creator | Veeramani, C. Spiteri, R.J. |
description | This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it must be kept immersed in liquid helium at a constant level with the pressure in the gas space maintained to an accuracy of ±1mbar. An improvement to the cryostat model suggested in [3] using control volumes is described. The model and numerical method developed for the liquid helium supply and gaseous helium return lines are validated using two different cases, viz., the liquid helium flow rate from the liquid helium transfer line and the gaseous helium flow rate from the cryostat for various heater power input settings. The numerical method described here is significantly more accurate, efficient, and flexible than that used in [1] based on an iterative bisection method. |
doi_str_mv | 10.1016/j.apm.2011.10.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266710046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X11006585</els_id><sourcerecordid>1266710046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-f3985b8d2ec763cae89ae3f0f722efe4ad3b8acae1e7217699bbe184eb5671143</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhH0AiVJ4AG4-cknYjdM4ESdU8ScVcQAkbpbjrIurJC52itS3x1U5c1rNaL6VZhi7QsgRsLrZ5Ho75AUgJp0DlCdsBgJk1kD5ecbOY9wAwCKpGRMvvqPejWuux45HN-x6PTk_cm_59EV8uXrjJuz9mkZneNzHiYYLdmp1H-ny787Zx8P9-_IpW70-Pi_vVpkRUkyZFU29aOuuICMrYTTVjSZhwcqiIEul7kRb6-QjyQJl1TRtS1iX1C4qiViKObs-_t0G_72jOKnBRUN9r0fyu6iwqFIw9atSFI9RE3yMgazaBjfosFcI6jCK2qg0ijqMcrASlJjbI0Opw4-joKJxNBrqXCAzqc67f-hfBZ5roQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266710046</pqid></control><display><type>article</type><title>Modeling and simulation of the CLS cryogenic system</title><source>ScienceDirect Freedom Collection (Elsevier)</source><source>EZB Electronic Journals Library</source><creator>Veeramani, C. ; Spiteri, R.J.</creator><creatorcontrib>Veeramani, C. ; Spiteri, R.J.</creatorcontrib><description>This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it must be kept immersed in liquid helium at a constant level with the pressure in the gas space maintained to an accuracy of ±1mbar. An improvement to the cryostat model suggested in [3] using control volumes is described. The model and numerical method developed for the liquid helium supply and gaseous helium return lines are validated using two different cases, viz., the liquid helium flow rate from the liquid helium transfer line and the gaseous helium flow rate from the cryostat for various heater power input settings. The numerical method described here is significantly more accurate, efficient, and flexible than that used in [1] based on an iterative bisection method.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2011.10.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cryogenics ; Cryostats ; Flow rate ; Helium ; Holes ; Liquid helium ; Mathematical models ; Numerical analysis ; Process modeling ; Radio frequencies ; Two-phase flow</subject><ispartof>Applied mathematical modelling, 2013-01, Vol.37 (1-2), p.34-49</ispartof><rights>2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-f3985b8d2ec763cae89ae3f0f722efe4ad3b8acae1e7217699bbe184eb5671143</citedby><cites>FETCH-LOGICAL-c373t-f3985b8d2ec763cae89ae3f0f722efe4ad3b8acae1e7217699bbe184eb5671143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2011.10.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Veeramani, C.</creatorcontrib><creatorcontrib>Spiteri, R.J.</creatorcontrib><title>Modeling and simulation of the CLS cryogenic system</title><title>Applied mathematical modelling</title><description>This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it must be kept immersed in liquid helium at a constant level with the pressure in the gas space maintained to an accuracy of ±1mbar. An improvement to the cryostat model suggested in [3] using control volumes is described. The model and numerical method developed for the liquid helium supply and gaseous helium return lines are validated using two different cases, viz., the liquid helium flow rate from the liquid helium transfer line and the gaseous helium flow rate from the cryostat for various heater power input settings. The numerical method described here is significantly more accurate, efficient, and flexible than that used in [1] based on an iterative bisection method.</description><subject>Cryogenics</subject><subject>Cryostats</subject><subject>Flow rate</subject><subject>Helium</subject><subject>Holes</subject><subject>Liquid helium</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Process modeling</subject><subject>Radio frequencies</subject><subject>Two-phase flow</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhH0AiVJ4AG4-cknYjdM4ESdU8ScVcQAkbpbjrIurJC52itS3x1U5c1rNaL6VZhi7QsgRsLrZ5Ho75AUgJp0DlCdsBgJk1kD5ecbOY9wAwCKpGRMvvqPejWuux45HN-x6PTk_cm_59EV8uXrjJuz9mkZneNzHiYYLdmp1H-ny787Zx8P9-_IpW70-Pi_vVpkRUkyZFU29aOuuICMrYTTVjSZhwcqiIEul7kRb6-QjyQJl1TRtS1iX1C4qiViKObs-_t0G_72jOKnBRUN9r0fyu6iwqFIw9atSFI9RE3yMgazaBjfosFcI6jCK2qg0ijqMcrASlJjbI0Opw4-joKJxNBrqXCAzqc67f-hfBZ5roQ</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Veeramani, C.</creator><creator>Spiteri, R.J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Modeling and simulation of the CLS cryogenic system</title><author>Veeramani, C. ; Spiteri, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-f3985b8d2ec763cae89ae3f0f722efe4ad3b8acae1e7217699bbe184eb5671143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cryogenics</topic><topic>Cryostats</topic><topic>Flow rate</topic><topic>Helium</topic><topic>Holes</topic><topic>Liquid helium</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Process modeling</topic><topic>Radio frequencies</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veeramani, C.</creatorcontrib><creatorcontrib>Spiteri, R.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veeramani, C.</au><au>Spiteri, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of the CLS cryogenic system</atitle><jtitle>Applied mathematical modelling</jtitle><date>2013-01</date><risdate>2013</risdate><volume>37</volume><issue>1-2</issue><spage>34</spage><epage>49</epage><pages>34-49</pages><issn>0307-904X</issn><abstract>This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it must be kept immersed in liquid helium at a constant level with the pressure in the gas space maintained to an accuracy of ±1mbar. An improvement to the cryostat model suggested in [3] using control volumes is described. The model and numerical method developed for the liquid helium supply and gaseous helium return lines are validated using two different cases, viz., the liquid helium flow rate from the liquid helium transfer line and the gaseous helium flow rate from the cryostat for various heater power input settings. The numerical method described here is significantly more accurate, efficient, and flexible than that used in [1] based on an iterative bisection method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2011.10.004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied mathematical modelling, 2013-01, Vol.37 (1-2), p.34-49 |
issn | 0307-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_1266710046 |
source | ScienceDirect Freedom Collection (Elsevier); EZB Electronic Journals Library |
subjects | Cryogenics Cryostats Flow rate Helium Holes Liquid helium Mathematical models Numerical analysis Process modeling Radio frequencies Two-phase flow |
title | Modeling and simulation of the CLS cryogenic system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20the%20CLS%20cryogenic%20system&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Veeramani,%20C.&rft.date=2013-01&rft.volume=37&rft.issue=1-2&rft.spage=34&rft.epage=49&rft.pages=34-49&rft.issn=0307-904X&rft_id=info:doi/10.1016/j.apm.2011.10.004&rft_dat=%3Cproquest_cross%3E1266710046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266710046&rft_id=info:pmid/&rft_els_id=S0307904X11006585&rfr_iscdi=true |