Modeling and simulation of the CLS cryogenic system

This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2013-01, Vol.37 (1-2), p.34-49
Hauptverfasser: Veeramani, C., Spiteri, R.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1-2
container_start_page 34
container_title Applied mathematical modelling
container_volume 37
creator Veeramani, C.
Spiteri, R.J.
description This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it must be kept immersed in liquid helium at a constant level with the pressure in the gas space maintained to an accuracy of ±1mbar. An improvement to the cryostat model suggested in [3] using control volumes is described. The model and numerical method developed for the liquid helium supply and gaseous helium return lines are validated using two different cases, viz., the liquid helium flow rate from the liquid helium transfer line and the gaseous helium flow rate from the cryostat for various heater power input settings. The numerical method described here is significantly more accurate, efficient, and flexible than that used in [1] based on an iterative bisection method.
doi_str_mv 10.1016/j.apm.2011.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266710046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X11006585</els_id><sourcerecordid>1266710046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-f3985b8d2ec763cae89ae3f0f722efe4ad3b8acae1e7217699bbe184eb5671143</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhH0AiVJ4AG4-cknYjdM4ESdU8ScVcQAkbpbjrIurJC52itS3x1U5c1rNaL6VZhi7QsgRsLrZ5Ho75AUgJp0DlCdsBgJk1kD5ecbOY9wAwCKpGRMvvqPejWuux45HN-x6PTk_cm_59EV8uXrjJuz9mkZneNzHiYYLdmp1H-ny787Zx8P9-_IpW70-Pi_vVpkRUkyZFU29aOuuICMrYTTVjSZhwcqiIEul7kRb6-QjyQJl1TRtS1iX1C4qiViKObs-_t0G_72jOKnBRUN9r0fyu6iwqFIw9atSFI9RE3yMgazaBjfosFcI6jCK2qg0ijqMcrASlJjbI0Opw4-joKJxNBrqXCAzqc67f-hfBZ5roQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266710046</pqid></control><display><type>article</type><title>Modeling and simulation of the CLS cryogenic system</title><source>ScienceDirect Freedom Collection (Elsevier)</source><source>EZB Electronic Journals Library</source><creator>Veeramani, C. ; Spiteri, R.J.</creator><creatorcontrib>Veeramani, C. ; Spiteri, R.J.</creatorcontrib><description>This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it must be kept immersed in liquid helium at a constant level with the pressure in the gas space maintained to an accuracy of ±1mbar. An improvement to the cryostat model suggested in [3] using control volumes is described. The model and numerical method developed for the liquid helium supply and gaseous helium return lines are validated using two different cases, viz., the liquid helium flow rate from the liquid helium transfer line and the gaseous helium flow rate from the cryostat for various heater power input settings. The numerical method described here is significantly more accurate, efficient, and flexible than that used in [1] based on an iterative bisection method.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2011.10.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cryogenics ; Cryostats ; Flow rate ; Helium ; Holes ; Liquid helium ; Mathematical models ; Numerical analysis ; Process modeling ; Radio frequencies ; Two-phase flow</subject><ispartof>Applied mathematical modelling, 2013-01, Vol.37 (1-2), p.34-49</ispartof><rights>2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-f3985b8d2ec763cae89ae3f0f722efe4ad3b8acae1e7217699bbe184eb5671143</citedby><cites>FETCH-LOGICAL-c373t-f3985b8d2ec763cae89ae3f0f722efe4ad3b8acae1e7217699bbe184eb5671143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2011.10.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Veeramani, C.</creatorcontrib><creatorcontrib>Spiteri, R.J.</creatorcontrib><title>Modeling and simulation of the CLS cryogenic system</title><title>Applied mathematical modelling</title><description>This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it must be kept immersed in liquid helium at a constant level with the pressure in the gas space maintained to an accuracy of ±1mbar. An improvement to the cryostat model suggested in [3] using control volumes is described. The model and numerical method developed for the liquid helium supply and gaseous helium return lines are validated using two different cases, viz., the liquid helium flow rate from the liquid helium transfer line and the gaseous helium flow rate from the cryostat for various heater power input settings. The numerical method described here is significantly more accurate, efficient, and flexible than that used in [1] based on an iterative bisection method.</description><subject>Cryogenics</subject><subject>Cryostats</subject><subject>Flow rate</subject><subject>Helium</subject><subject>Holes</subject><subject>Liquid helium</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Process modeling</subject><subject>Radio frequencies</subject><subject>Two-phase flow</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhH0AiVJ4AG4-cknYjdM4ESdU8ScVcQAkbpbjrIurJC52itS3x1U5c1rNaL6VZhi7QsgRsLrZ5Ho75AUgJp0DlCdsBgJk1kD5ecbOY9wAwCKpGRMvvqPejWuux45HN-x6PTk_cm_59EV8uXrjJuz9mkZneNzHiYYLdmp1H-ny787Zx8P9-_IpW70-Pi_vVpkRUkyZFU29aOuuICMrYTTVjSZhwcqiIEul7kRb6-QjyQJl1TRtS1iX1C4qiViKObs-_t0G_72jOKnBRUN9r0fyu6iwqFIw9atSFI9RE3yMgazaBjfosFcI6jCK2qg0ijqMcrASlJjbI0Opw4-joKJxNBrqXCAzqc67f-hfBZ5roQ</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Veeramani, C.</creator><creator>Spiteri, R.J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Modeling and simulation of the CLS cryogenic system</title><author>Veeramani, C. ; Spiteri, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-f3985b8d2ec763cae89ae3f0f722efe4ad3b8acae1e7217699bbe184eb5671143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cryogenics</topic><topic>Cryostats</topic><topic>Flow rate</topic><topic>Helium</topic><topic>Holes</topic><topic>Liquid helium</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Process modeling</topic><topic>Radio frequencies</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veeramani, C.</creatorcontrib><creatorcontrib>Spiteri, R.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veeramani, C.</au><au>Spiteri, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of the CLS cryogenic system</atitle><jtitle>Applied mathematical modelling</jtitle><date>2013-01</date><risdate>2013</risdate><volume>37</volume><issue>1-2</issue><spage>34</spage><epage>49</epage><pages>34-49</pages><issn>0307-904X</issn><abstract>This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it must be kept immersed in liquid helium at a constant level with the pressure in the gas space maintained to an accuracy of ±1mbar. An improvement to the cryostat model suggested in [3] using control volumes is described. The model and numerical method developed for the liquid helium supply and gaseous helium return lines are validated using two different cases, viz., the liquid helium flow rate from the liquid helium transfer line and the gaseous helium flow rate from the cryostat for various heater power input settings. The numerical method described here is significantly more accurate, efficient, and flexible than that used in [1] based on an iterative bisection method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2011.10.004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2013-01, Vol.37 (1-2), p.34-49
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_1266710046
source ScienceDirect Freedom Collection (Elsevier); EZB Electronic Journals Library
subjects Cryogenics
Cryostats
Flow rate
Helium
Holes
Liquid helium
Mathematical models
Numerical analysis
Process modeling
Radio frequencies
Two-phase flow
title Modeling and simulation of the CLS cryogenic system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20the%20CLS%20cryogenic%20system&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Veeramani,%20C.&rft.date=2013-01&rft.volume=37&rft.issue=1-2&rft.spage=34&rft.epage=49&rft.pages=34-49&rft.issn=0307-904X&rft_id=info:doi/10.1016/j.apm.2011.10.004&rft_dat=%3Cproquest_cross%3E1266710046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266710046&rft_id=info:pmid/&rft_els_id=S0307904X11006585&rfr_iscdi=true