Confronting Deep Uncertainties in Risk Analysis

How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Risk analysis 2012-10, Vol.32 (10), p.1607-1629
1. Verfasser: Cox Jr, Louis Anthony (Tony)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1629
container_issue 10
container_start_page 1607
container_title Risk analysis
container_volume 32
creator Cox Jr, Louis Anthony (Tony)
description How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to managing emerging diseases to operating complex and hazardous facilities safely. We review constructive methods for robust and adaptive risk analysis under deep uncertainty. These methods are not yet as familiar to many risk analysts as older statistical and model‐based methods, such as the paradigm of identifying a single “best‐fitting” model and performing sensitivity analyses for its conclusions. They provide genuine breakthroughs for improving predictions and decisions when the correct model is highly uncertain. We demonstrate their potential by summarizing a variety of practical risk management applications.
doi_str_mv 10.1111/j.1539-6924.2012.01792.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266174290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082239063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5852-b89f00ce87c575d2920900b3c40cdbe9a74a06ab4170bb137f3a97fe4f5fede83</originalsourceid><addsrcrecordid>eNqN0U9P2zAYBnBr2jQ62FeYIu2yS8Lr1__iy6SqQEGgTcDQpl0sJ3UmlzQpdqu13x6Hsh52AV9s2T8_lvwQklEoaBrH84IKpnOpkRcIFAugSmOxeUNG-4O3ZASoMOeM4QH5EOMcgAII9Z4cIPJSC05H5HjSd03ou5Xv_mQnzi2zu652YWV92nIx81124-N9Nu5su40-HpF3jW2j-_g8H5K7s9Mfk_P86vv0YjK-ymtRCsyrUjcAtStVLZSYoUbQABWrOdSzymmruAVpK04VVBVlqmFWq8bxRjRu5kp2SL7scpehf1i7uDILH2vXtrZz_ToailJSxVHDy5QiV1yXir-CUobIONMvUyiT1CBZop__o_N-HdKHPSnKpUSJSZU7VYc-xuAaswx-YcM2oeFhauZmKM8M5ZmhVfPUqtmkq5-eH1hXCzfbX_xXYwJfd-Cvb9321cHm5uJ2PCxTQL4L8HHlNvsAG-6NVEwJ8_Pb1Ewvf19eX__S5ow9AgM5vE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081466262</pqid></control><display><type>article</type><title>Confronting Deep Uncertainties in Risk Analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PAIS Index</source><source>Business Source Complete</source><creator>Cox Jr, Louis Anthony (Tony)</creator><creatorcontrib>Cox Jr, Louis Anthony (Tony)</creatorcontrib><description>How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to managing emerging diseases to operating complex and hazardous facilities safely. We review constructive methods for robust and adaptive risk analysis under deep uncertainty. These methods are not yet as familiar to many risk analysts as older statistical and model‐based methods, such as the paradigm of identifying a single “best‐fitting” model and performing sensitivity analyses for its conclusions. They provide genuine breakthroughs for improving predictions and decisions when the correct model is highly uncertain. We demonstrate their potential by summarizing a variety of practical risk management applications.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/j.1539-6924.2012.01792.x</identifier><identifier>PMID: 22489541</identifier><identifier>CODEN: RIANDF</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>AdaBoost ; Animals ; Bayes Theorem ; Climate Change ; Decision Making ; Decision Theory ; deep uncertainty ; Diseases ; Economic models ; Ecosystem ; Fisheries ; Forecasting ; Global warming ; Humans ; Infection Control ; Learning ; low-regret online decisions ; Markov analysis ; Markov Chains ; Markov decision process ; model ensemble methods ; Models, Theoretical ; Policy making ; POMDP ; Probability ; reinforcement learning ; Renewable Energy ; Risk ; Risk assessment ; Risk Management ; robust decision making ; robust optimization ; robust risk analysis ; SARSA ; Statistical methods ; Studies ; Uncertainty</subject><ispartof>Risk analysis, 2012-10, Vol.32 (10), p.1607-1629</ispartof><rights>2012 Society for Risk Analysis</rights><rights>2012 Society for Risk Analysis.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5852-b89f00ce87c575d2920900b3c40cdbe9a74a06ab4170bb137f3a97fe4f5fede83</citedby><cites>FETCH-LOGICAL-c5852-b89f00ce87c575d2920900b3c40cdbe9a74a06ab4170bb137f3a97fe4f5fede83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1539-6924.2012.01792.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1539-6924.2012.01792.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27844,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22489541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cox Jr, Louis Anthony (Tony)</creatorcontrib><title>Confronting Deep Uncertainties in Risk Analysis</title><title>Risk analysis</title><addtitle>Risk Anal</addtitle><description>How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to managing emerging diseases to operating complex and hazardous facilities safely. We review constructive methods for robust and adaptive risk analysis under deep uncertainty. These methods are not yet as familiar to many risk analysts as older statistical and model‐based methods, such as the paradigm of identifying a single “best‐fitting” model and performing sensitivity analyses for its conclusions. They provide genuine breakthroughs for improving predictions and decisions when the correct model is highly uncertain. We demonstrate their potential by summarizing a variety of practical risk management applications.</description><subject>AdaBoost</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Climate Change</subject><subject>Decision Making</subject><subject>Decision Theory</subject><subject>deep uncertainty</subject><subject>Diseases</subject><subject>Economic models</subject><subject>Ecosystem</subject><subject>Fisheries</subject><subject>Forecasting</subject><subject>Global warming</subject><subject>Humans</subject><subject>Infection Control</subject><subject>Learning</subject><subject>low-regret online decisions</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Markov decision process</subject><subject>model ensemble methods</subject><subject>Models, Theoretical</subject><subject>Policy making</subject><subject>POMDP</subject><subject>Probability</subject><subject>reinforcement learning</subject><subject>Renewable Energy</subject><subject>Risk</subject><subject>Risk assessment</subject><subject>Risk Management</subject><subject>robust decision making</subject><subject>robust optimization</subject><subject>robust risk analysis</subject><subject>SARSA</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7TQ</sourceid><recordid>eNqN0U9P2zAYBnBr2jQ62FeYIu2yS8Lr1__iy6SqQEGgTcDQpl0sJ3UmlzQpdqu13x6Hsh52AV9s2T8_lvwQklEoaBrH84IKpnOpkRcIFAugSmOxeUNG-4O3ZASoMOeM4QH5EOMcgAII9Z4cIPJSC05H5HjSd03ou5Xv_mQnzi2zu652YWV92nIx81124-N9Nu5su40-HpF3jW2j-_g8H5K7s9Mfk_P86vv0YjK-ymtRCsyrUjcAtStVLZSYoUbQABWrOdSzymmruAVpK04VVBVlqmFWq8bxRjRu5kp2SL7scpehf1i7uDILH2vXtrZz_ToailJSxVHDy5QiV1yXir-CUobIONMvUyiT1CBZop__o_N-HdKHPSnKpUSJSZU7VYc-xuAaswx-YcM2oeFhauZmKM8M5ZmhVfPUqtmkq5-eH1hXCzfbX_xXYwJfd-Cvb9321cHm5uJ2PCxTQL4L8HHlNvsAG-6NVEwJ8_Pb1Ewvf19eX__S5ow9AgM5vE0</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Cox Jr, Louis Anthony (Tony)</creator><general>Blackwell Publishing Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>7U9</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>FQK</scope><scope>FR3</scope><scope>H94</scope><scope>JBE</scope><scope>JQ2</scope><scope>KR7</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><scope>7U1</scope><scope>7U2</scope><scope>7U6</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>201210</creationdate><title>Confronting Deep Uncertainties in Risk Analysis</title><author>Cox Jr, Louis Anthony (Tony)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5852-b89f00ce87c575d2920900b3c40cdbe9a74a06ab4170bb137f3a97fe4f5fede83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AdaBoost</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Climate Change</topic><topic>Decision Making</topic><topic>Decision Theory</topic><topic>deep uncertainty</topic><topic>Diseases</topic><topic>Economic models</topic><topic>Ecosystem</topic><topic>Fisheries</topic><topic>Forecasting</topic><topic>Global warming</topic><topic>Humans</topic><topic>Infection Control</topic><topic>Learning</topic><topic>low-regret online decisions</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Markov decision process</topic><topic>model ensemble methods</topic><topic>Models, Theoretical</topic><topic>Policy making</topic><topic>POMDP</topic><topic>Probability</topic><topic>reinforcement learning</topic><topic>Renewable Energy</topic><topic>Risk</topic><topic>Risk assessment</topic><topic>Risk Management</topic><topic>robust decision making</topic><topic>robust optimization</topic><topic>robust risk analysis</topic><topic>SARSA</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox Jr, Louis Anthony (Tony)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox Jr, Louis Anthony (Tony)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confronting Deep Uncertainties in Risk Analysis</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Anal</addtitle><date>2012-10</date><risdate>2012</risdate><volume>32</volume><issue>10</issue><spage>1607</spage><epage>1629</epage><pages>1607-1629</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><coden>RIANDF</coden><abstract>How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to managing emerging diseases to operating complex and hazardous facilities safely. We review constructive methods for robust and adaptive risk analysis under deep uncertainty. These methods are not yet as familiar to many risk analysts as older statistical and model‐based methods, such as the paradigm of identifying a single “best‐fitting” model and performing sensitivity analyses for its conclusions. They provide genuine breakthroughs for improving predictions and decisions when the correct model is highly uncertain. We demonstrate their potential by summarizing a variety of practical risk management applications.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>22489541</pmid><doi>10.1111/j.1539-6924.2012.01792.x</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4332
ispartof Risk analysis, 2012-10, Vol.32 (10), p.1607-1629
issn 0272-4332
1539-6924
language eng
recordid cdi_proquest_miscellaneous_1266174290
source MEDLINE; Wiley Online Library Journals Frontfile Complete; PAIS Index; Business Source Complete
subjects AdaBoost
Animals
Bayes Theorem
Climate Change
Decision Making
Decision Theory
deep uncertainty
Diseases
Economic models
Ecosystem
Fisheries
Forecasting
Global warming
Humans
Infection Control
Learning
low-regret online decisions
Markov analysis
Markov Chains
Markov decision process
model ensemble methods
Models, Theoretical
Policy making
POMDP
Probability
reinforcement learning
Renewable Energy
Risk
Risk assessment
Risk Management
robust decision making
robust optimization
robust risk analysis
SARSA
Statistical methods
Studies
Uncertainty
title Confronting Deep Uncertainties in Risk Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confronting%20Deep%20Uncertainties%20in%20Risk%20Analysis&rft.jtitle=Risk%20analysis&rft.au=Cox%20Jr,%20Louis%20Anthony%20(Tony)&rft.date=2012-10&rft.volume=32&rft.issue=10&rft.spage=1607&rft.epage=1629&rft.pages=1607-1629&rft.issn=0272-4332&rft.eissn=1539-6924&rft.coden=RIANDF&rft_id=info:doi/10.1111/j.1539-6924.2012.01792.x&rft_dat=%3Cproquest_cross%3E1082239063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081466262&rft_id=info:pmid/22489541&rfr_iscdi=true