Confronting Deep Uncertainties in Risk Analysis
How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to man...
Gespeichert in:
Veröffentlicht in: | Risk analysis 2012-10, Vol.32 (10), p.1607-1629 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1629 |
---|---|
container_issue | 10 |
container_start_page | 1607 |
container_title | Risk analysis |
container_volume | 32 |
creator | Cox Jr, Louis Anthony (Tony) |
description | How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to managing emerging diseases to operating complex and hazardous facilities safely. We review constructive methods for robust and adaptive risk analysis under deep uncertainty. These methods are not yet as familiar to many risk analysts as older statistical and model‐based methods, such as the paradigm of identifying a single “best‐fitting” model and performing sensitivity analyses for its conclusions. They provide genuine breakthroughs for improving predictions and decisions when the correct model is highly uncertain. We demonstrate their potential by summarizing a variety of practical risk management applications. |
doi_str_mv | 10.1111/j.1539-6924.2012.01792.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266174290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082239063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5852-b89f00ce87c575d2920900b3c40cdbe9a74a06ab4170bb137f3a97fe4f5fede83</originalsourceid><addsrcrecordid>eNqN0U9P2zAYBnBr2jQ62FeYIu2yS8Lr1__iy6SqQEGgTcDQpl0sJ3UmlzQpdqu13x6Hsh52AV9s2T8_lvwQklEoaBrH84IKpnOpkRcIFAugSmOxeUNG-4O3ZASoMOeM4QH5EOMcgAII9Z4cIPJSC05H5HjSd03ou5Xv_mQnzi2zu652YWV92nIx81124-N9Nu5su40-HpF3jW2j-_g8H5K7s9Mfk_P86vv0YjK-ymtRCsyrUjcAtStVLZSYoUbQABWrOdSzymmruAVpK04VVBVlqmFWq8bxRjRu5kp2SL7scpehf1i7uDILH2vXtrZz_ToailJSxVHDy5QiV1yXir-CUobIONMvUyiT1CBZop__o_N-HdKHPSnKpUSJSZU7VYc-xuAaswx-YcM2oeFhauZmKM8M5ZmhVfPUqtmkq5-eH1hXCzfbX_xXYwJfd-Cvb9321cHm5uJ2PCxTQL4L8HHlNvsAG-6NVEwJ8_Pb1Ewvf19eX__S5ow9AgM5vE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081466262</pqid></control><display><type>article</type><title>Confronting Deep Uncertainties in Risk Analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PAIS Index</source><source>Business Source Complete</source><creator>Cox Jr, Louis Anthony (Tony)</creator><creatorcontrib>Cox Jr, Louis Anthony (Tony)</creatorcontrib><description>How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to managing emerging diseases to operating complex and hazardous facilities safely. We review constructive methods for robust and adaptive risk analysis under deep uncertainty. These methods are not yet as familiar to many risk analysts as older statistical and model‐based methods, such as the paradigm of identifying a single “best‐fitting” model and performing sensitivity analyses for its conclusions. They provide genuine breakthroughs for improving predictions and decisions when the correct model is highly uncertain. We demonstrate their potential by summarizing a variety of practical risk management applications.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/j.1539-6924.2012.01792.x</identifier><identifier>PMID: 22489541</identifier><identifier>CODEN: RIANDF</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>AdaBoost ; Animals ; Bayes Theorem ; Climate Change ; Decision Making ; Decision Theory ; deep uncertainty ; Diseases ; Economic models ; Ecosystem ; Fisheries ; Forecasting ; Global warming ; Humans ; Infection Control ; Learning ; low-regret online decisions ; Markov analysis ; Markov Chains ; Markov decision process ; model ensemble methods ; Models, Theoretical ; Policy making ; POMDP ; Probability ; reinforcement learning ; Renewable Energy ; Risk ; Risk assessment ; Risk Management ; robust decision making ; robust optimization ; robust risk analysis ; SARSA ; Statistical methods ; Studies ; Uncertainty</subject><ispartof>Risk analysis, 2012-10, Vol.32 (10), p.1607-1629</ispartof><rights>2012 Society for Risk Analysis</rights><rights>2012 Society for Risk Analysis.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5852-b89f00ce87c575d2920900b3c40cdbe9a74a06ab4170bb137f3a97fe4f5fede83</citedby><cites>FETCH-LOGICAL-c5852-b89f00ce87c575d2920900b3c40cdbe9a74a06ab4170bb137f3a97fe4f5fede83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1539-6924.2012.01792.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1539-6924.2012.01792.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27844,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22489541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cox Jr, Louis Anthony (Tony)</creatorcontrib><title>Confronting Deep Uncertainties in Risk Analysis</title><title>Risk analysis</title><addtitle>Risk Anal</addtitle><description>How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to managing emerging diseases to operating complex and hazardous facilities safely. We review constructive methods for robust and adaptive risk analysis under deep uncertainty. These methods are not yet as familiar to many risk analysts as older statistical and model‐based methods, such as the paradigm of identifying a single “best‐fitting” model and performing sensitivity analyses for its conclusions. They provide genuine breakthroughs for improving predictions and decisions when the correct model is highly uncertain. We demonstrate their potential by summarizing a variety of practical risk management applications.</description><subject>AdaBoost</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Climate Change</subject><subject>Decision Making</subject><subject>Decision Theory</subject><subject>deep uncertainty</subject><subject>Diseases</subject><subject>Economic models</subject><subject>Ecosystem</subject><subject>Fisheries</subject><subject>Forecasting</subject><subject>Global warming</subject><subject>Humans</subject><subject>Infection Control</subject><subject>Learning</subject><subject>low-regret online decisions</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Markov decision process</subject><subject>model ensemble methods</subject><subject>Models, Theoretical</subject><subject>Policy making</subject><subject>POMDP</subject><subject>Probability</subject><subject>reinforcement learning</subject><subject>Renewable Energy</subject><subject>Risk</subject><subject>Risk assessment</subject><subject>Risk Management</subject><subject>robust decision making</subject><subject>robust optimization</subject><subject>robust risk analysis</subject><subject>SARSA</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7TQ</sourceid><recordid>eNqN0U9P2zAYBnBr2jQ62FeYIu2yS8Lr1__iy6SqQEGgTcDQpl0sJ3UmlzQpdqu13x6Hsh52AV9s2T8_lvwQklEoaBrH84IKpnOpkRcIFAugSmOxeUNG-4O3ZASoMOeM4QH5EOMcgAII9Z4cIPJSC05H5HjSd03ou5Xv_mQnzi2zu652YWV92nIx81124-N9Nu5su40-HpF3jW2j-_g8H5K7s9Mfk_P86vv0YjK-ymtRCsyrUjcAtStVLZSYoUbQABWrOdSzymmruAVpK04VVBVlqmFWq8bxRjRu5kp2SL7scpehf1i7uDILH2vXtrZz_ToailJSxVHDy5QiV1yXir-CUobIONMvUyiT1CBZop__o_N-HdKHPSnKpUSJSZU7VYc-xuAaswx-YcM2oeFhauZmKM8M5ZmhVfPUqtmkq5-eH1hXCzfbX_xXYwJfd-Cvb9321cHm5uJ2PCxTQL4L8HHlNvsAG-6NVEwJ8_Pb1Ewvf19eX__S5ow9AgM5vE0</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Cox Jr, Louis Anthony (Tony)</creator><general>Blackwell Publishing Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>7U9</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>FQK</scope><scope>FR3</scope><scope>H94</scope><scope>JBE</scope><scope>JQ2</scope><scope>KR7</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><scope>7U1</scope><scope>7U2</scope><scope>7U6</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>201210</creationdate><title>Confronting Deep Uncertainties in Risk Analysis</title><author>Cox Jr, Louis Anthony (Tony)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5852-b89f00ce87c575d2920900b3c40cdbe9a74a06ab4170bb137f3a97fe4f5fede83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AdaBoost</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Climate Change</topic><topic>Decision Making</topic><topic>Decision Theory</topic><topic>deep uncertainty</topic><topic>Diseases</topic><topic>Economic models</topic><topic>Ecosystem</topic><topic>Fisheries</topic><topic>Forecasting</topic><topic>Global warming</topic><topic>Humans</topic><topic>Infection Control</topic><topic>Learning</topic><topic>low-regret online decisions</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Markov decision process</topic><topic>model ensemble methods</topic><topic>Models, Theoretical</topic><topic>Policy making</topic><topic>POMDP</topic><topic>Probability</topic><topic>reinforcement learning</topic><topic>Renewable Energy</topic><topic>Risk</topic><topic>Risk assessment</topic><topic>Risk Management</topic><topic>robust decision making</topic><topic>robust optimization</topic><topic>robust risk analysis</topic><topic>SARSA</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox Jr, Louis Anthony (Tony)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox Jr, Louis Anthony (Tony)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confronting Deep Uncertainties in Risk Analysis</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Anal</addtitle><date>2012-10</date><risdate>2012</risdate><volume>32</volume><issue>10</issue><spage>1607</spage><epage>1629</epage><pages>1607-1629</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><coden>RIANDF</coden><abstract>How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to managing emerging diseases to operating complex and hazardous facilities safely. We review constructive methods for robust and adaptive risk analysis under deep uncertainty. These methods are not yet as familiar to many risk analysts as older statistical and model‐based methods, such as the paradigm of identifying a single “best‐fitting” model and performing sensitivity analyses for its conclusions. They provide genuine breakthroughs for improving predictions and decisions when the correct model is highly uncertain. We demonstrate their potential by summarizing a variety of practical risk management applications.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>22489541</pmid><doi>10.1111/j.1539-6924.2012.01792.x</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4332 |
ispartof | Risk analysis, 2012-10, Vol.32 (10), p.1607-1629 |
issn | 0272-4332 1539-6924 |
language | eng |
recordid | cdi_proquest_miscellaneous_1266174290 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; PAIS Index; Business Source Complete |
subjects | AdaBoost Animals Bayes Theorem Climate Change Decision Making Decision Theory deep uncertainty Diseases Economic models Ecosystem Fisheries Forecasting Global warming Humans Infection Control Learning low-regret online decisions Markov analysis Markov Chains Markov decision process model ensemble methods Models, Theoretical Policy making POMDP Probability reinforcement learning Renewable Energy Risk Risk assessment Risk Management robust decision making robust optimization robust risk analysis SARSA Statistical methods Studies Uncertainty |
title | Confronting Deep Uncertainties in Risk Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confronting%20Deep%20Uncertainties%20in%20Risk%20Analysis&rft.jtitle=Risk%20analysis&rft.au=Cox%20Jr,%20Louis%20Anthony%20(Tony)&rft.date=2012-10&rft.volume=32&rft.issue=10&rft.spage=1607&rft.epage=1629&rft.pages=1607-1629&rft.issn=0272-4332&rft.eissn=1539-6924&rft.coden=RIANDF&rft_id=info:doi/10.1111/j.1539-6924.2012.01792.x&rft_dat=%3Cproquest_cross%3E1082239063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081466262&rft_id=info:pmid/22489541&rfr_iscdi=true |