organic solvent-, detergent-, and thermostable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5
Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45°C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF...
Gespeichert in:
Veröffentlicht in: | Microbiology (New York) 2010-10, Vol.79 (5), p.620-629 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45°C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over a broad range of temperatures (45-70°C) and pH (8-10) range with an optimum activity at pH 10 and 65°C. It was comparatively stable in the presence of a relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45°C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications. |
---|---|
ISSN: | 0026-2617 1608-3237 |
DOI: | 10.1134/S0026261710050061 |