Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824
In this report, a novel zymogram assay and coupled phosphoketolase assay were employed to demonstrate that Clostridium acetobutylicum gene CAC1343 encodes a bi-functional xylulose-5-P/fructose-6-P phosphoketolase (XFP). The specific activity of purified recombinant XFP was 6.9 U/mg on xylulose-5-P a...
Gespeichert in:
Veröffentlicht in: | Journal of industrial microbiology & biotechnology 2012-12, Vol.39 (12), p.1859-1867 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1867 |
---|---|
container_issue | 12 |
container_start_page | 1859 |
container_title | Journal of industrial microbiology & biotechnology |
container_volume | 39 |
creator | Servinsky, M. D. Germane, K. L. Liu, S. Kiel, J. T. Clark, A. M. Shankar, J. Sund, C. J. |
description | In this report, a novel zymogram assay and coupled phosphoketolase assay were employed to demonstrate that
Clostridium acetobutylicum
gene CAC1343 encodes a bi-functional xylulose-5-P/fructose-6-P phosphoketolase (XFP). The specific activity of purified recombinant XFP was 6.9 U/mg on xylulose-5-P and 21 U/mg on fructose-6-P, while the specific activity of XFP in concentrated
C. acetobutylicum
whole-cell extract was 0.094 and 0.52 U/mg, respectively. Analysis of crude cell extracts indicated that XFP activity was present in cells grown on arabinose but not glucose and quantitative PCR was used to show that CAC1343 mRNA expression was induced 185-fold during growth on arabinose when compared to growth on glucose. HPLC analysis of metabolites revealed that during growth on xylose and glucose more butyrate than acetate was formed with final acetate:butyrate ratios of 0.72 and 0.83, respectively. Growth on arabinose caused a metabolic shift to more oxidized products with a final acetate:butyrate ratio of 1.95. The shift towards more oxidized products is consistent with the presence of an XFP, suggesting that arabinose is metabolized via a phosphoketolase pathway while xylose is probably metabolized via the pentose phosphate pathway. |
doi_str_mv | 10.1007/s10295-012-1186-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1257762050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816279221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-4ee942b3b5935e5cbfee848e212b16c88b6133343b8fc2b3d2580e92f10788893</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVpadJtf0AvQVAKvbiRRpYsHxfTLwj0khyLkLTjRoltbSQ7zebXV2G3TSgUJDSDnpl55yXkLWcfOWPNaeYMWlkxDhXnWlV3z8gxrxtVSSnk8xIL1VSyFvKIvMr5ijEmmwZekiOAtpwajsmPdbIuTDEjDZmOOFsXh3CPG3obLLV0exlzudc4x8EWaGvny192R8NEuyHmOYVNWEZqfQHcMu-G4Eu6Pu86qqF-TV70dsj45vCuyMXnT-fd1-rs-5dv3fqs8nWj56pGLGKccLIVEqV3PaKuNQIHx5XX2ikuhKiF070v3AakZthCz1mjtW7FinzY992meLNgns0YssdhsBPGJRsOZXEFTLKCvvsHvYpLmoo6w7kEBqAbKBTfUz7FnBP2ZpvCaNPOcGYevDd7703x3jx4b-5Kzcmh8-JG3Pyt-GN2Ad4fAJu9HfpkJx_yI6eUZKpsuSKw53L5mn5ieiLxv9N_AzJNmvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1152022872</pqid></control><display><type>article</type><title>Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Servinsky, M. D. ; Germane, K. L. ; Liu, S. ; Kiel, J. T. ; Clark, A. M. ; Shankar, J. ; Sund, C. J.</creator><creatorcontrib>Servinsky, M. D. ; Germane, K. L. ; Liu, S. ; Kiel, J. T. ; Clark, A. M. ; Shankar, J. ; Sund, C. J.</creatorcontrib><description>In this report, a novel zymogram assay and coupled phosphoketolase assay were employed to demonstrate that
Clostridium acetobutylicum
gene CAC1343 encodes a bi-functional xylulose-5-P/fructose-6-P phosphoketolase (XFP). The specific activity of purified recombinant XFP was 6.9 U/mg on xylulose-5-P and 21 U/mg on fructose-6-P, while the specific activity of XFP in concentrated
C. acetobutylicum
whole-cell extract was 0.094 and 0.52 U/mg, respectively. Analysis of crude cell extracts indicated that XFP activity was present in cells grown on arabinose but not glucose and quantitative PCR was used to show that CAC1343 mRNA expression was induced 185-fold during growth on arabinose when compared to growth on glucose. HPLC analysis of metabolites revealed that during growth on xylose and glucose more butyrate than acetate was formed with final acetate:butyrate ratios of 0.72 and 0.83, respectively. Growth on arabinose caused a metabolic shift to more oxidized products with a final acetate:butyrate ratio of 1.95. The shift towards more oxidized products is consistent with the presence of an XFP, suggesting that arabinose is metabolized via a phosphoketolase pathway while xylose is probably metabolized via the pentose phosphate pathway.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-012-1186-x</identifier><identifier>PMID: 22922942</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aldehyde-Lyases - metabolism ; Analysis ; Arabinose - metabolism ; Bacteria ; Bioassays ; Biochemistry ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; Cloning ; Clostridium acetobutylicum ; Clostridium acetobutylicum - enzymology ; Clostridium acetobutylicum - genetics ; Clostridium acetobutylicum - metabolism ; E coli ; Fructose - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Bacterial - drug effects ; Genes ; Genetic Engineering ; Genetic recombination ; Genetics and Molecular Biology of Industrial Organisms ; Glucose ; Glucose - metabolism ; Inorganic Chemistry ; Life Sciences ; Liquid chromatography ; Metabolism ; Metabolites ; Microbiology ; Pentose Phosphate Pathway ; Physiology ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Studies ; Time Factors ; Xylose - metabolism</subject><ispartof>Journal of industrial microbiology & biotechnology, 2012-12, Vol.39 (12), p.1859-1867</ispartof><rights>Springer-Verlag (outside the USA) 2012</rights><rights>2014 INIST-CNRS</rights><rights>Society for Industrial Microbiology and Biotechnology 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-4ee942b3b5935e5cbfee848e212b16c88b6133343b8fc2b3d2580e92f10788893</citedby><cites>FETCH-LOGICAL-c478t-4ee942b3b5935e5cbfee848e212b16c88b6133343b8fc2b3d2580e92f10788893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-012-1186-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-012-1186-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26650634$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22922942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Servinsky, M. D.</creatorcontrib><creatorcontrib>Germane, K. L.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Kiel, J. T.</creatorcontrib><creatorcontrib>Clark, A. M.</creatorcontrib><creatorcontrib>Shankar, J.</creatorcontrib><creatorcontrib>Sund, C. J.</creatorcontrib><title>Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824</title><title>Journal of industrial microbiology & biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>In this report, a novel zymogram assay and coupled phosphoketolase assay were employed to demonstrate that
Clostridium acetobutylicum
gene CAC1343 encodes a bi-functional xylulose-5-P/fructose-6-P phosphoketolase (XFP). The specific activity of purified recombinant XFP was 6.9 U/mg on xylulose-5-P and 21 U/mg on fructose-6-P, while the specific activity of XFP in concentrated
C. acetobutylicum
whole-cell extract was 0.094 and 0.52 U/mg, respectively. Analysis of crude cell extracts indicated that XFP activity was present in cells grown on arabinose but not glucose and quantitative PCR was used to show that CAC1343 mRNA expression was induced 185-fold during growth on arabinose when compared to growth on glucose. HPLC analysis of metabolites revealed that during growth on xylose and glucose more butyrate than acetate was formed with final acetate:butyrate ratios of 0.72 and 0.83, respectively. Growth on arabinose caused a metabolic shift to more oxidized products with a final acetate:butyrate ratio of 1.95. The shift towards more oxidized products is consistent with the presence of an XFP, suggesting that arabinose is metabolized via a phosphoketolase pathway while xylose is probably metabolized via the pentose phosphate pathway.</description><subject>Aldehyde-Lyases - metabolism</subject><subject>Analysis</subject><subject>Arabinose - metabolism</subject><subject>Bacteria</subject><subject>Bioassays</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cloning</subject><subject>Clostridium acetobutylicum</subject><subject>Clostridium acetobutylicum - enzymology</subject><subject>Clostridium acetobutylicum - genetics</subject><subject>Clostridium acetobutylicum - metabolism</subject><subject>E coli</subject><subject>Fructose - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Genes</subject><subject>Genetic Engineering</subject><subject>Genetic recombination</subject><subject>Genetics and Molecular Biology of Industrial Organisms</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Inorganic Chemistry</subject><subject>Life Sciences</subject><subject>Liquid chromatography</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Pentose Phosphate Pathway</subject><subject>Physiology</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Studies</subject><subject>Time Factors</subject><subject>Xylose - metabolism</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1r3DAQhkVpadJtf0AvQVAKvbiRRpYsHxfTLwj0khyLkLTjRoltbSQ7zebXV2G3TSgUJDSDnpl55yXkLWcfOWPNaeYMWlkxDhXnWlV3z8gxrxtVSSnk8xIL1VSyFvKIvMr5ijEmmwZekiOAtpwajsmPdbIuTDEjDZmOOFsXh3CPG3obLLV0exlzudc4x8EWaGvny192R8NEuyHmOYVNWEZqfQHcMu-G4Eu6Pu86qqF-TV70dsj45vCuyMXnT-fd1-rs-5dv3fqs8nWj56pGLGKccLIVEqV3PaKuNQIHx5XX2ikuhKiF070v3AakZthCz1mjtW7FinzY992meLNgns0YssdhsBPGJRsOZXEFTLKCvvsHvYpLmoo6w7kEBqAbKBTfUz7FnBP2ZpvCaNPOcGYevDd7703x3jx4b-5Kzcmh8-JG3Pyt-GN2Ad4fAJu9HfpkJx_yI6eUZKpsuSKw53L5mn5ieiLxv9N_AzJNmvk</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Servinsky, M. D.</creator><creator>Germane, K. L.</creator><creator>Liu, S.</creator><creator>Kiel, J. T.</creator><creator>Clark, A. M.</creator><creator>Shankar, J.</creator><creator>Sund, C. J.</creator><general>Springer-Verlag</general><general>Springer</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20121201</creationdate><title>Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824</title><author>Servinsky, M. D. ; Germane, K. L. ; Liu, S. ; Kiel, J. T. ; Clark, A. M. ; Shankar, J. ; Sund, C. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-4ee942b3b5935e5cbfee848e212b16c88b6133343b8fc2b3d2580e92f10788893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aldehyde-Lyases - metabolism</topic><topic>Analysis</topic><topic>Arabinose - metabolism</topic><topic>Bacteria</topic><topic>Bioassays</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cloning</topic><topic>Clostridium acetobutylicum</topic><topic>Clostridium acetobutylicum - enzymology</topic><topic>Clostridium acetobutylicum - genetics</topic><topic>Clostridium acetobutylicum - metabolism</topic><topic>E coli</topic><topic>Fructose - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Genes</topic><topic>Genetic Engineering</topic><topic>Genetic recombination</topic><topic>Genetics and Molecular Biology of Industrial Organisms</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Inorganic Chemistry</topic><topic>Life Sciences</topic><topic>Liquid chromatography</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Pentose Phosphate Pathway</topic><topic>Physiology</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Studies</topic><topic>Time Factors</topic><topic>Xylose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Servinsky, M. D.</creatorcontrib><creatorcontrib>Germane, K. L.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Kiel, J. T.</creatorcontrib><creatorcontrib>Clark, A. M.</creatorcontrib><creatorcontrib>Shankar, J.</creatorcontrib><creatorcontrib>Sund, C. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Servinsky, M. D.</au><au>Germane, K. L.</au><au>Liu, S.</au><au>Kiel, J. T.</au><au>Clark, A. M.</au><au>Shankar, J.</au><au>Sund, C. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824</atitle><jtitle>Journal of industrial microbiology & biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>39</volume><issue>12</issue><spage>1859</spage><epage>1867</epage><pages>1859-1867</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>In this report, a novel zymogram assay and coupled phosphoketolase assay were employed to demonstrate that
Clostridium acetobutylicum
gene CAC1343 encodes a bi-functional xylulose-5-P/fructose-6-P phosphoketolase (XFP). The specific activity of purified recombinant XFP was 6.9 U/mg on xylulose-5-P and 21 U/mg on fructose-6-P, while the specific activity of XFP in concentrated
C. acetobutylicum
whole-cell extract was 0.094 and 0.52 U/mg, respectively. Analysis of crude cell extracts indicated that XFP activity was present in cells grown on arabinose but not glucose and quantitative PCR was used to show that CAC1343 mRNA expression was induced 185-fold during growth on arabinose when compared to growth on glucose. HPLC analysis of metabolites revealed that during growth on xylose and glucose more butyrate than acetate was formed with final acetate:butyrate ratios of 0.72 and 0.83, respectively. Growth on arabinose caused a metabolic shift to more oxidized products with a final acetate:butyrate ratio of 1.95. The shift towards more oxidized products is consistent with the presence of an XFP, suggesting that arabinose is metabolized via a phosphoketolase pathway while xylose is probably metabolized via the pentose phosphate pathway.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22922942</pmid><doi>10.1007/s10295-012-1186-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-5435 |
ispartof | Journal of industrial microbiology & biotechnology, 2012-12, Vol.39 (12), p.1859-1867 |
issn | 1367-5435 1476-5535 |
language | eng |
recordid | cdi_proquest_miscellaneous_1257762050 |
source | MEDLINE; Oxford Journals Open Access Collection; SpringerLink Journals - AutoHoldings |
subjects | Aldehyde-Lyases - metabolism Analysis Arabinose - metabolism Bacteria Bioassays Biochemistry Bioinformatics Biological and medical sciences Biomedical and Life Sciences Biotechnology Cloning Clostridium acetobutylicum Clostridium acetobutylicum - enzymology Clostridium acetobutylicum - genetics Clostridium acetobutylicum - metabolism E coli Fructose - metabolism Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Bacterial - drug effects Genes Genetic Engineering Genetic recombination Genetics and Molecular Biology of Industrial Organisms Glucose Glucose - metabolism Inorganic Chemistry Life Sciences Liquid chromatography Metabolism Metabolites Microbiology Pentose Phosphate Pathway Physiology RNA, Messenger - genetics RNA, Messenger - metabolism Studies Time Factors Xylose - metabolism |
title | Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabinose%20is%20metabolized%20via%20a%20phosphoketolase%20pathway%20in%20Clostridium%20acetobutylicum%20ATCC%20824&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Servinsky,%20M.%20D.&rft.date=2012-12-01&rft.volume=39&rft.issue=12&rft.spage=1859&rft.epage=1867&rft.pages=1859-1867&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-012-1186-x&rft_dat=%3Cproquest_cross%3E2816279221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1152022872&rft_id=info:pmid/22922942&rfr_iscdi=true |