Soil Mobilisation of Al, Fe and Mn Due to Vicinal Intensive Hog Farming Operation Located in East Mediterranean

Concentrated Animal Feeding Operation activities lead to soil degradation in vicinity with the livestock breeding facilities, mainly due to ammonia emissions from the various stages of the process. In this research, the soil degradation effects of an intensive hog farming operation (IHFO) located at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2012-11, Vol.223 (9), p.5885-5892
Hauptverfasser: Michalopoulos, Charalampos, Liodakis, Stylianos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Concentrated Animal Feeding Operation activities lead to soil degradation in vicinity with the livestock breeding facilities, mainly due to ammonia emissions from the various stages of the process. In this research, the soil degradation effects of an intensive hog farming operation (IHFO) located at a Mediterranean limestone soil coastal area, have been investigated. Soil samples of the upper mineral soil were taken in various distances (10–1,500 m) and directions from the IHFO boundaries. Thirteen experimental cycles were carried out in the duration of 1.5 years starting in March 2009 until October 2010. The soil samples were analysed on total, exchangeable and water-soluble Al, Fe and Mn. Significantly higher concentrations of the exchangeable and water-soluble Al, Fe and Mn were observed on soil samples at increasing proximity downwind from the farm (south). Southern soil average concentrations of exchangeable Al 3+ , Fe 3+ and Mn 2+ ranged between 3.56 and 7.45 mmol Al 3+ kg −1 soil, 5.85 and 7.11 mmol Fe 3+ kg −1 soil and 2.36 and 5.03 mmol Mn 2+ kg −1 soil, respectively. Southern soil average concentrations of water-soluble Al, Fe and Mn forms ranged between 1.1 and 4.6 ppm Al, 0.5 and 0.8 ppm Fe and 0.4 and 1 ppm Mn, respectively.
ISSN:0049-6979
1573-2932
DOI:10.1007/s11270-012-1324-0