Photocurrent of a single photosynthetic protein
Photosynthesis is used by plants, algae and bacteria to convert solar energy into stable chemical energy. The initial stages of this process—where light is absorbed and energy and electrons are transferred—are mediated by reaction centres composed of chlorophyll and carotenoid complexes 1 . It has b...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2012-10, Vol.7 (10), p.673-676 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 676 |
---|---|
container_issue | 10 |
container_start_page | 673 |
container_title | Nature nanotechnology |
container_volume | 7 |
creator | Gerster, Daniel Reichert, Joachim Bi, Hai Barth, Johannes V. Kaniber, Simone M. Holleitner, Alexander W. Visoly-Fisher, Iris Sergani, Shlomi Carmeli, Itai |
description | Photosynthesis is used by plants, algae and bacteria to convert solar energy into stable chemical energy. The initial stages of this process—where light is absorbed and energy and electrons are transferred—are mediated by reaction centres composed of chlorophyll and carotenoid complexes
1
. It has been previously shown that single small molecules can be used as functional components in electric
2
,
3
,
4
,
5
,
6
and optoelectronic circuits
7
,
8
,
9
,
10
, but it has proved difficult to control and probe individual molecules for photovoltaic
11
,
12
,
13
and photoelectrochemical applications
14
,
15
,
16
. Here, we show that the photocurrent generated by a single photosynthetic protein—photosystem I—can be measured using a scanning near-field optical microscope set-up. One side of the protein is anchored to a gold surface that acts as an electrode, and the other is contacted by a gold-covered glass tip. The tip functions as both counter electrode and light source. A photocurrent of ∼10 pA is recorded from the covalently bound single-protein junctions, which is in agreement with the internal electron transfer times of photosystem I.
The photocurrent generated by a single photosynthetic protein can be measured using a scanning near-field optical probe that functions as both an electrode and a light source. |
doi_str_mv | 10.1038/nnano.2012.165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1257751089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1095456448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-5e8c2b6c76a62d2860d7aeabc6e28c430bca6b427d01636364ec8147592c3bbd3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlavHmXBi5fd5jvZo4hfUNCDnkM2m7ZbtklNdg_992ZtLSKC5DCBeeYd5gHgEsECQSKnzmnnCwwRLhBnR2CMBJU5ISU7PvylGIGzGFcQMlxiegpGmEBMOKVjMH1d-s6bPgTruszPM53Fxi1am22GRty6bmm7xmSb4DvbuHNwMtdttBf7OgHvD_dvd0_57OXx-e52lhvKcZczKw2uuBFcc1xjyWEttNWV4RZLQwmsjOYVxaKGiJP0qDUSUcFKbEhV1WQCbna5ae9Hb2On1k00tm21s76PCmEmBENQlv-jsGSUpWtlQq9_oSvfB5cOGSjKCGdcJKrYUSb4GIOdq01o1jpsE6QG6-rLuhqsq2Q9DVztY_tqbesD_q05AdMdEFPLLWz4uffPyE_Xgows</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1094536567</pqid></control><display><type>article</type><title>Photocurrent of a single photosynthetic protein</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Gerster, Daniel ; Reichert, Joachim ; Bi, Hai ; Barth, Johannes V. ; Kaniber, Simone M. ; Holleitner, Alexander W. ; Visoly-Fisher, Iris ; Sergani, Shlomi ; Carmeli, Itai</creator><creatorcontrib>Gerster, Daniel ; Reichert, Joachim ; Bi, Hai ; Barth, Johannes V. ; Kaniber, Simone M. ; Holleitner, Alexander W. ; Visoly-Fisher, Iris ; Sergani, Shlomi ; Carmeli, Itai</creatorcontrib><description>Photosynthesis is used by plants, algae and bacteria to convert solar energy into stable chemical energy. The initial stages of this process—where light is absorbed and energy and electrons are transferred—are mediated by reaction centres composed of chlorophyll and carotenoid complexes
1
. It has been previously shown that single small molecules can be used as functional components in electric
2
,
3
,
4
,
5
,
6
and optoelectronic circuits
7
,
8
,
9
,
10
, but it has proved difficult to control and probe individual molecules for photovoltaic
11
,
12
,
13
and photoelectrochemical applications
14
,
15
,
16
. Here, we show that the photocurrent generated by a single photosynthetic protein—photosystem I—can be measured using a scanning near-field optical microscope set-up. One side of the protein is anchored to a gold surface that acts as an electrode, and the other is contacted by a gold-covered glass tip. The tip functions as both counter electrode and light source. A photocurrent of ∼10 pA is recorded from the covalently bound single-protein junctions, which is in agreement with the internal electron transfer times of photosystem I.
The photocurrent generated by a single photosynthetic protein can be measured using a scanning near-field optical probe that functions as both an electrode and a light source.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2012.165</identifier><identifier>PMID: 23023644</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449/1734/2075 ; 639/638/439/944 ; 639/925/350 ; Algae ; Carotenoids ; Carotenoids - chemistry ; Chemistry and Materials Science ; Chlorophyll ; Chlorophyll - chemistry ; Electrodes ; Electron Transport ; Gold ; Lasers ; letter ; Light ; Light sources ; Materials Science ; Mutation ; Nanotechnology ; Nanotechnology and Microengineering ; Photosynthesis ; Photosystem I Protein Complex - chemistry ; Photovoltaics ; Proteins ; Solar energy</subject><ispartof>Nature nanotechnology, 2012-10, Vol.7 (10), p.673-676</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-5e8c2b6c76a62d2860d7aeabc6e28c430bca6b427d01636364ec8147592c3bbd3</citedby><cites>FETCH-LOGICAL-c462t-5e8c2b6c76a62d2860d7aeabc6e28c430bca6b427d01636364ec8147592c3bbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2012.165$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2012.165$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23023644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerster, Daniel</creatorcontrib><creatorcontrib>Reichert, Joachim</creatorcontrib><creatorcontrib>Bi, Hai</creatorcontrib><creatorcontrib>Barth, Johannes V.</creatorcontrib><creatorcontrib>Kaniber, Simone M.</creatorcontrib><creatorcontrib>Holleitner, Alexander W.</creatorcontrib><creatorcontrib>Visoly-Fisher, Iris</creatorcontrib><creatorcontrib>Sergani, Shlomi</creatorcontrib><creatorcontrib>Carmeli, Itai</creatorcontrib><title>Photocurrent of a single photosynthetic protein</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Photosynthesis is used by plants, algae and bacteria to convert solar energy into stable chemical energy. The initial stages of this process—where light is absorbed and energy and electrons are transferred—are mediated by reaction centres composed of chlorophyll and carotenoid complexes
1
. It has been previously shown that single small molecules can be used as functional components in electric
2
,
3
,
4
,
5
,
6
and optoelectronic circuits
7
,
8
,
9
,
10
, but it has proved difficult to control and probe individual molecules for photovoltaic
11
,
12
,
13
and photoelectrochemical applications
14
,
15
,
16
. Here, we show that the photocurrent generated by a single photosynthetic protein—photosystem I—can be measured using a scanning near-field optical microscope set-up. One side of the protein is anchored to a gold surface that acts as an electrode, and the other is contacted by a gold-covered glass tip. The tip functions as both counter electrode and light source. A photocurrent of ∼10 pA is recorded from the covalently bound single-protein junctions, which is in agreement with the internal electron transfer times of photosystem I.
The photocurrent generated by a single photosynthetic protein can be measured using a scanning near-field optical probe that functions as both an electrode and a light source.</description><subject>631/449/1734/2075</subject><subject>639/638/439/944</subject><subject>639/925/350</subject><subject>Algae</subject><subject>Carotenoids</subject><subject>Carotenoids - chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chlorophyll</subject><subject>Chlorophyll - chemistry</subject><subject>Electrodes</subject><subject>Electron Transport</subject><subject>Gold</subject><subject>Lasers</subject><subject>letter</subject><subject>Light</subject><subject>Light sources</subject><subject>Materials Science</subject><subject>Mutation</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Photosynthesis</subject><subject>Photosystem I Protein Complex - chemistry</subject><subject>Photovoltaics</subject><subject>Proteins</subject><subject>Solar energy</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LAzEQhoMotlavHmXBi5fd5jvZo4hfUNCDnkM2m7ZbtklNdg_992ZtLSKC5DCBeeYd5gHgEsECQSKnzmnnCwwRLhBnR2CMBJU5ISU7PvylGIGzGFcQMlxiegpGmEBMOKVjMH1d-s6bPgTruszPM53Fxi1am22GRty6bmm7xmSb4DvbuHNwMtdttBf7OgHvD_dvd0_57OXx-e52lhvKcZczKw2uuBFcc1xjyWEttNWV4RZLQwmsjOYVxaKGiJP0qDUSUcFKbEhV1WQCbna5ae9Hb2On1k00tm21s76PCmEmBENQlv-jsGSUpWtlQq9_oSvfB5cOGSjKCGdcJKrYUSb4GIOdq01o1jpsE6QG6-rLuhqsq2Q9DVztY_tqbesD_q05AdMdEFPLLWz4uffPyE_Xgows</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Gerster, Daniel</creator><creator>Reichert, Joachim</creator><creator>Bi, Hai</creator><creator>Barth, Johannes V.</creator><creator>Kaniber, Simone M.</creator><creator>Holleitner, Alexander W.</creator><creator>Visoly-Fisher, Iris</creator><creator>Sergani, Shlomi</creator><creator>Carmeli, Itai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>M7N</scope></search><sort><creationdate>20121001</creationdate><title>Photocurrent of a single photosynthetic protein</title><author>Gerster, Daniel ; Reichert, Joachim ; Bi, Hai ; Barth, Johannes V. ; Kaniber, Simone M. ; Holleitner, Alexander W. ; Visoly-Fisher, Iris ; Sergani, Shlomi ; Carmeli, Itai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-5e8c2b6c76a62d2860d7aeabc6e28c430bca6b427d01636364ec8147592c3bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/449/1734/2075</topic><topic>639/638/439/944</topic><topic>639/925/350</topic><topic>Algae</topic><topic>Carotenoids</topic><topic>Carotenoids - chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chlorophyll</topic><topic>Chlorophyll - chemistry</topic><topic>Electrodes</topic><topic>Electron Transport</topic><topic>Gold</topic><topic>Lasers</topic><topic>letter</topic><topic>Light</topic><topic>Light sources</topic><topic>Materials Science</topic><topic>Mutation</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Photosynthesis</topic><topic>Photosystem I Protein Complex - chemistry</topic><topic>Photovoltaics</topic><topic>Proteins</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerster, Daniel</creatorcontrib><creatorcontrib>Reichert, Joachim</creatorcontrib><creatorcontrib>Bi, Hai</creatorcontrib><creatorcontrib>Barth, Johannes V.</creatorcontrib><creatorcontrib>Kaniber, Simone M.</creatorcontrib><creatorcontrib>Holleitner, Alexander W.</creatorcontrib><creatorcontrib>Visoly-Fisher, Iris</creatorcontrib><creatorcontrib>Sergani, Shlomi</creatorcontrib><creatorcontrib>Carmeli, Itai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerster, Daniel</au><au>Reichert, Joachim</au><au>Bi, Hai</au><au>Barth, Johannes V.</au><au>Kaniber, Simone M.</au><au>Holleitner, Alexander W.</au><au>Visoly-Fisher, Iris</au><au>Sergani, Shlomi</au><au>Carmeli, Itai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocurrent of a single photosynthetic protein</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>7</volume><issue>10</issue><spage>673</spage><epage>676</epage><pages>673-676</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Photosynthesis is used by plants, algae and bacteria to convert solar energy into stable chemical energy. The initial stages of this process—where light is absorbed and energy and electrons are transferred—are mediated by reaction centres composed of chlorophyll and carotenoid complexes
1
. It has been previously shown that single small molecules can be used as functional components in electric
2
,
3
,
4
,
5
,
6
and optoelectronic circuits
7
,
8
,
9
,
10
, but it has proved difficult to control and probe individual molecules for photovoltaic
11
,
12
,
13
and photoelectrochemical applications
14
,
15
,
16
. Here, we show that the photocurrent generated by a single photosynthetic protein—photosystem I—can be measured using a scanning near-field optical microscope set-up. One side of the protein is anchored to a gold surface that acts as an electrode, and the other is contacted by a gold-covered glass tip. The tip functions as both counter electrode and light source. A photocurrent of ∼10 pA is recorded from the covalently bound single-protein junctions, which is in agreement with the internal electron transfer times of photosystem I.
The photocurrent generated by a single photosynthetic protein can be measured using a scanning near-field optical probe that functions as both an electrode and a light source.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23023644</pmid><doi>10.1038/nnano.2012.165</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2012-10, Vol.7 (10), p.673-676 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_1257751089 |
source | MEDLINE; Nature; Springer Nature - Complete Springer Journals |
subjects | 631/449/1734/2075 639/638/439/944 639/925/350 Algae Carotenoids Carotenoids - chemistry Chemistry and Materials Science Chlorophyll Chlorophyll - chemistry Electrodes Electron Transport Gold Lasers letter Light Light sources Materials Science Mutation Nanotechnology Nanotechnology and Microengineering Photosynthesis Photosystem I Protein Complex - chemistry Photovoltaics Proteins Solar energy |
title | Photocurrent of a single photosynthetic protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocurrent%20of%20a%20single%20photosynthetic%20protein&rft.jtitle=Nature%20nanotechnology&rft.au=Gerster,%20Daniel&rft.date=2012-10-01&rft.volume=7&rft.issue=10&rft.spage=673&rft.epage=676&rft.pages=673-676&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2012.165&rft_dat=%3Cproquest_cross%3E1095456448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1094536567&rft_id=info:pmid/23023644&rfr_iscdi=true |