Connecting dynamic vegetation models to data - an inverse perspective
Dynamic vegetation models provide process-based explanations of the dynamics and the distribution of plant ecosystems. They offer significant advantages over static, correlative modelling approaches, particularly for ecosystems that are outside their equilibrium due to global change or climate chang...
Gespeichert in:
Veröffentlicht in: | Journal of biogeography 2012-12, Vol.39 (12), p.2240-2252 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2252 |
---|---|
container_issue | 12 |
container_start_page | 2240 |
container_title | Journal of biogeography |
container_volume | 39 |
creator | Hartig, Florian Dyke, James Hickler, Thomas Higgins, Steven I. O'Hara, Robert B. Scheiter, Simon Huth, Andreas |
description | Dynamic vegetation models provide process-based explanations of the dynamics and the distribution of plant ecosystems. They offer significant advantages over static, correlative modelling approaches, particularly for ecosystems that are outside their equilibrium due to global change or climate change. A persistent problem, however, is their parameterization. Parameters and processes of dynamic vegetation models (DVMs) are traditionally determined independently of the model, while model outputs are compared to empirical data for validation and informal model comparison only. But field data for such independent estimates of parameters and processes are often difficult to obtain, and the desire to include better descriptions of processes such as biotic interactions, dispersal, phenotypic plasticity and evolution in future vegetation models aggravates limitations related to the current parameterization paradigm. In this paper, we discuss the use of Bayesian methods to bridge this gap. We explain how Bayesian methods allow direct estimates of parameters and processes, encoded in prior distributions, to be combined with inverse estimates, encoded in likelihood functions. The combination of direct and inverse estimation of parameters and processes allows a much wider range of vegetation data to be used simultaneously, including vegetation inventories, species traits, species distributions, remote sensing, eddy flux measurements and palaeorecords. The possible reduction of uncertainty regarding structure, parameters and predictions of DVMs may not only foster scientific progress, but will also increase the relevance of these models for policy advice. |
doi_str_mv | 10.1111/j.1365-2699.2012.02745.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1257747104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23354526</jstor_id><sourcerecordid>23354526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5005-60f06d5a1242031715d1a58cb7ddf4a835f4e61c22a8dcb0f1803c27d681ee4c3</originalsourceid><addsrcrecordid>eNqNkE9v0zAYhy3EJMrgIyBZ4sIlwf-dHjhAN8amabsMenzl2c6UkNrFTkv77XEW1AMnfLAtPb_Hr_VDCFNS07I-9jXlSlZMLZc1I5TVhGkh68MLtDiBl2hBOJFVQeQVep1zTwhZSi4W6HIVQ_B27MITdsdgNp3Fe__kRzN2MeBNdH7IeIzYmdHgCpuAu7D3KXu8Lft2Uvf-DTprzZD927_nOfr-9fJh9a26vb-6Xn2-rawkZb4iLVFOGsoEI5xqKh01srGP2rlWmIbLVnhFLWOmcfaRtLQh3DLtVEO9F5afow_zu9sUf-18HmHTZeuHwQQfdxkok1oLTYko0ff_RPu4S6H8DmiZzJVSUpdUM6dsijkn38I2dRuTjkAJTP1CD1ONMNUIU7_w3C8civppVn93gz_-twc3X66nW_HfzX6fx5hOPuNcCslU4dXMuzz6w4mb9BOU5lrC-u4K5Hq5bn5cSLjgfwDUZZgh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1171366657</pqid></control><display><type>article</type><title>Connecting dynamic vegetation models to data - an inverse perspective</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hartig, Florian ; Dyke, James ; Hickler, Thomas ; Higgins, Steven I. ; O'Hara, Robert B. ; Scheiter, Simon ; Huth, Andreas</creator><creatorcontrib>Hartig, Florian ; Dyke, James ; Hickler, Thomas ; Higgins, Steven I. ; O'Hara, Robert B. ; Scheiter, Simon ; Huth, Andreas</creatorcontrib><description>Dynamic vegetation models provide process-based explanations of the dynamics and the distribution of plant ecosystems. They offer significant advantages over static, correlative modelling approaches, particularly for ecosystems that are outside their equilibrium due to global change or climate change. A persistent problem, however, is their parameterization. Parameters and processes of dynamic vegetation models (DVMs) are traditionally determined independently of the model, while model outputs are compared to empirical data for validation and informal model comparison only. But field data for such independent estimates of parameters and processes are often difficult to obtain, and the desire to include better descriptions of processes such as biotic interactions, dispersal, phenotypic plasticity and evolution in future vegetation models aggravates limitations related to the current parameterization paradigm. In this paper, we discuss the use of Bayesian methods to bridge this gap. We explain how Bayesian methods allow direct estimates of parameters and processes, encoded in prior distributions, to be combined with inverse estimates, encoded in likelihood functions. The combination of direct and inverse estimation of parameters and processes allows a much wider range of vegetation data to be used simultaneously, including vegetation inventories, species traits, species distributions, remote sensing, eddy flux measurements and palaeorecords. The possible reduction of uncertainty regarding structure, parameters and predictions of DVMs may not only foster scientific progress, but will also increase the relevance of these models for policy advice.</description><identifier>ISSN: 0305-0270</identifier><identifier>EISSN: 1365-2699</identifier><identifier>DOI: 10.1111/j.1365-2699.2012.02745.x</identifier><identifier>CODEN: JBIODN</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bayesian statistics ; Biogeography ; calibration ; Climate models ; data assimilation ; Dynamic modeling ; Ecological modeling ; Ecosystem models ; Forest ecology ; forest models ; inverse modelling ; model selection ; Modeling ; parameterization ; Parametric models ; plant functional types ; Plants ; predictive uncertainty ; process-based models ; Remote sensing ; Studies ; Vegetation</subject><ispartof>Journal of biogeography, 2012-12, Vol.39 (12), p.2240-2252</ispartof><rights>Copyright © 2012 Blackwell Publishing Ltd.</rights><rights>2012 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5005-60f06d5a1242031715d1a58cb7ddf4a835f4e61c22a8dcb0f1803c27d681ee4c3</citedby><cites>FETCH-LOGICAL-c5005-60f06d5a1242031715d1a58cb7ddf4a835f4e61c22a8dcb0f1803c27d681ee4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23354526$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23354526$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Hartig, Florian</creatorcontrib><creatorcontrib>Dyke, James</creatorcontrib><creatorcontrib>Hickler, Thomas</creatorcontrib><creatorcontrib>Higgins, Steven I.</creatorcontrib><creatorcontrib>O'Hara, Robert B.</creatorcontrib><creatorcontrib>Scheiter, Simon</creatorcontrib><creatorcontrib>Huth, Andreas</creatorcontrib><title>Connecting dynamic vegetation models to data - an inverse perspective</title><title>Journal of biogeography</title><description>Dynamic vegetation models provide process-based explanations of the dynamics and the distribution of plant ecosystems. They offer significant advantages over static, correlative modelling approaches, particularly for ecosystems that are outside their equilibrium due to global change or climate change. A persistent problem, however, is their parameterization. Parameters and processes of dynamic vegetation models (DVMs) are traditionally determined independently of the model, while model outputs are compared to empirical data for validation and informal model comparison only. But field data for such independent estimates of parameters and processes are often difficult to obtain, and the desire to include better descriptions of processes such as biotic interactions, dispersal, phenotypic plasticity and evolution in future vegetation models aggravates limitations related to the current parameterization paradigm. In this paper, we discuss the use of Bayesian methods to bridge this gap. We explain how Bayesian methods allow direct estimates of parameters and processes, encoded in prior distributions, to be combined with inverse estimates, encoded in likelihood functions. The combination of direct and inverse estimation of parameters and processes allows a much wider range of vegetation data to be used simultaneously, including vegetation inventories, species traits, species distributions, remote sensing, eddy flux measurements and palaeorecords. The possible reduction of uncertainty regarding structure, parameters and predictions of DVMs may not only foster scientific progress, but will also increase the relevance of these models for policy advice.</description><subject>Bayesian statistics</subject><subject>Biogeography</subject><subject>calibration</subject><subject>Climate models</subject><subject>data assimilation</subject><subject>Dynamic modeling</subject><subject>Ecological modeling</subject><subject>Ecosystem models</subject><subject>Forest ecology</subject><subject>forest models</subject><subject>inverse modelling</subject><subject>model selection</subject><subject>Modeling</subject><subject>parameterization</subject><subject>Parametric models</subject><subject>plant functional types</subject><subject>Plants</subject><subject>predictive uncertainty</subject><subject>process-based models</subject><subject>Remote sensing</subject><subject>Studies</subject><subject>Vegetation</subject><issn>0305-0270</issn><issn>1365-2699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE9v0zAYhy3EJMrgIyBZ4sIlwf-dHjhAN8amabsMenzl2c6UkNrFTkv77XEW1AMnfLAtPb_Hr_VDCFNS07I-9jXlSlZMLZc1I5TVhGkh68MLtDiBl2hBOJFVQeQVep1zTwhZSi4W6HIVQ_B27MITdsdgNp3Fe__kRzN2MeBNdH7IeIzYmdHgCpuAu7D3KXu8Lft2Uvf-DTprzZD927_nOfr-9fJh9a26vb-6Xn2-rawkZb4iLVFOGsoEI5xqKh01srGP2rlWmIbLVnhFLWOmcfaRtLQh3DLtVEO9F5afow_zu9sUf-18HmHTZeuHwQQfdxkok1oLTYko0ff_RPu4S6H8DmiZzJVSUpdUM6dsijkn38I2dRuTjkAJTP1CD1ONMNUIU7_w3C8civppVn93gz_-twc3X66nW_HfzX6fx5hOPuNcCslU4dXMuzz6w4mb9BOU5lrC-u4K5Hq5bn5cSLjgfwDUZZgh</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Hartig, Florian</creator><creator>Dyke, James</creator><creator>Hickler, Thomas</creator><creator>Higgins, Steven I.</creator><creator>O'Hara, Robert B.</creator><creator>Scheiter, Simon</creator><creator>Huth, Andreas</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>201212</creationdate><title>Connecting dynamic vegetation models to data - an inverse perspective</title><author>Hartig, Florian ; Dyke, James ; Hickler, Thomas ; Higgins, Steven I. ; O'Hara, Robert B. ; Scheiter, Simon ; Huth, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5005-60f06d5a1242031715d1a58cb7ddf4a835f4e61c22a8dcb0f1803c27d681ee4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayesian statistics</topic><topic>Biogeography</topic><topic>calibration</topic><topic>Climate models</topic><topic>data assimilation</topic><topic>Dynamic modeling</topic><topic>Ecological modeling</topic><topic>Ecosystem models</topic><topic>Forest ecology</topic><topic>forest models</topic><topic>inverse modelling</topic><topic>model selection</topic><topic>Modeling</topic><topic>parameterization</topic><topic>Parametric models</topic><topic>plant functional types</topic><topic>Plants</topic><topic>predictive uncertainty</topic><topic>process-based models</topic><topic>Remote sensing</topic><topic>Studies</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartig, Florian</creatorcontrib><creatorcontrib>Dyke, James</creatorcontrib><creatorcontrib>Hickler, Thomas</creatorcontrib><creatorcontrib>Higgins, Steven I.</creatorcontrib><creatorcontrib>O'Hara, Robert B.</creatorcontrib><creatorcontrib>Scheiter, Simon</creatorcontrib><creatorcontrib>Huth, Andreas</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Journal of biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartig, Florian</au><au>Dyke, James</au><au>Hickler, Thomas</au><au>Higgins, Steven I.</au><au>O'Hara, Robert B.</au><au>Scheiter, Simon</au><au>Huth, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connecting dynamic vegetation models to data - an inverse perspective</atitle><jtitle>Journal of biogeography</jtitle><date>2012-12</date><risdate>2012</risdate><volume>39</volume><issue>12</issue><spage>2240</spage><epage>2252</epage><pages>2240-2252</pages><issn>0305-0270</issn><eissn>1365-2699</eissn><coden>JBIODN</coden><abstract>Dynamic vegetation models provide process-based explanations of the dynamics and the distribution of plant ecosystems. They offer significant advantages over static, correlative modelling approaches, particularly for ecosystems that are outside their equilibrium due to global change or climate change. A persistent problem, however, is their parameterization. Parameters and processes of dynamic vegetation models (DVMs) are traditionally determined independently of the model, while model outputs are compared to empirical data for validation and informal model comparison only. But field data for such independent estimates of parameters and processes are often difficult to obtain, and the desire to include better descriptions of processes such as biotic interactions, dispersal, phenotypic plasticity and evolution in future vegetation models aggravates limitations related to the current parameterization paradigm. In this paper, we discuss the use of Bayesian methods to bridge this gap. We explain how Bayesian methods allow direct estimates of parameters and processes, encoded in prior distributions, to be combined with inverse estimates, encoded in likelihood functions. The combination of direct and inverse estimation of parameters and processes allows a much wider range of vegetation data to be used simultaneously, including vegetation inventories, species traits, species distributions, remote sensing, eddy flux measurements and palaeorecords. The possible reduction of uncertainty regarding structure, parameters and predictions of DVMs may not only foster scientific progress, but will also increase the relevance of these models for policy advice.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2699.2012.02745.x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0270 |
ispartof | Journal of biogeography, 2012-12, Vol.39 (12), p.2240-2252 |
issn | 0305-0270 1365-2699 |
language | eng |
recordid | cdi_proquest_miscellaneous_1257747104 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete |
subjects | Bayesian statistics Biogeography calibration Climate models data assimilation Dynamic modeling Ecological modeling Ecosystem models Forest ecology forest models inverse modelling model selection Modeling parameterization Parametric models plant functional types Plants predictive uncertainty process-based models Remote sensing Studies Vegetation |
title | Connecting dynamic vegetation models to data - an inverse perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connecting%20dynamic%20vegetation%20models%20to%20data%20-%20an%20inverse%20perspective&rft.jtitle=Journal%20of%20biogeography&rft.au=Hartig,%20Florian&rft.date=2012-12&rft.volume=39&rft.issue=12&rft.spage=2240&rft.epage=2252&rft.pages=2240-2252&rft.issn=0305-0270&rft.eissn=1365-2699&rft.coden=JBIODN&rft_id=info:doi/10.1111/j.1365-2699.2012.02745.x&rft_dat=%3Cjstor_proqu%3E23354526%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1171366657&rft_id=info:pmid/&rft_jstor_id=23354526&rfr_iscdi=true |